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Abstract

The path number of a graph is the maximum number of vertices of an
induced path in the graph. One can make analogous definitions for the
tree number, forest number, and bipartite number of a graph. We
discuss several lower bounds for these invariants that were conjectured
by Graffiti.pc, and the relationship between these lower bounds and
known theorems or prior conjectures.
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Introduction and Key Definitions

Graffiti.pc, a computer program that makes graph theoretical conjectures,
was written by E. DeLaViiia. This program utilizes conjecture making strategies
similar to those found in Graffiti, a program written by S. Fajtlowicz that dates
from the mid-1980's. The operation of Graffiti.pc and its similarities to Graffiti
are described in {11] and [12]. Some conjectures of Graffiti will be referred to in
this paper. A numbered, annotated listing of several hundred of Graffiti's
conjectures can be found in [15]. Graffiti has correctly conjectured a number of
new bounds for several well-studied graph invariants; bibliographical
information on resulting papers can be found in [13].

We limit our discussion to graphs that are simple and finite of order n and
size e. The path number of a graph G, denoted by p = p(G), is the maximum
order of an induced path in the graph. One can make analogous definitions for
the tree number, forest number, and bipartite number of a graph G. These
invariants are denoted by t = t(G), f = f(G), and b = b(G), respectively.

The purpose of this paper is to state and in some cases prove lower bounds
for this suite of related invariants that were recently conjectured by Graffiti.pc. A
few of Graffiti.pc's conjectures are “rediscoveries” of prior results, which we
include for historical context and motivation, but most are new so far as the
authors can discern. In fact, Graffiti.pc has conjectured many more new bounds
for these invariants (both upper and lower) than we are able to include in this
paper; a numbered, annotated listing of all current conjectures can be found in

[9].



Some Other Definitions

We will use the standard notation to denote the minimum and maximum
degrees of a graph G (6 = 6(G) and A = A(G), respectively), and we may
sometimes identify G with its set of vertices. We let o = a(G) denote the
independence number of G. Suppose v is a vertex of G. Then the local
independence number at v is the independence number of the subgraph induced
by the neighbors of v. We use = u(G) for the maximum of the local
independence numbers taken over all vertices of G.

The following definitions pertain to connected graphs. The distance between
two vertices of a graph is the length of the shortest path connecting the two
vertices. The average distance of a graph G, written D = D(G), is the average
distance between pairs of distinct vertices of G. The eccentricity of a vertex v is
the maximum of the distances from the vertex v to all other vertices of the graph.
The diameter of a graph G, denoted d = d(G), is the maximum eccentricity of
all vertices of the graph. The set of vertices with maximum eccentricity is called
the boundary of G. The radius of a graph, written r = 7(G), is the minimum
eccentricity of all vertices. The set of vertices with minimum eccentricity is
called the center of G.

More specialized definitions will be introduced immediately prior to their
first appearance in a conjecture. Standard graph-theoretical terms not defined in
this paper can be found in [22]. The following proposition summarizes the
obvious relationships between our key invariants, as well as « and d; we will
refer to it often.

Proposition 1. Let G be a connected graph. Then

20>2b2>2f>t>p>d+1

Motivation, Conjectures, and Main Results

Part i) The path number and the tree number

Many classical results about the tree number and the path number of a graph
can be found in a 1986 paper by P. Erdés, M. Saks, and V. Sés [14]. For
instance, the following theorem provides a lower bound on the tree number in
terms of the order and the size.

Theorem 1. (Erdds, Saks, and Sés) Let G be a graph. Then

y>_2m
“e—n+3



Moreover, the following result about the path number, sometimes referred to
as the Induced Path Theorem [16], appears in the same paper, but the proof
given is credited to F. Chung. Graffiti.pc also made this conjecture.

Theorem 2, (Chung} Let G be a connected graph. Then
p>2r—1

There appears to be little follow-up work in the literature that provides new
or improved lower bounds on either the tree number or the path number.
However, there do exist at least two different generalizations (but not
improvements) of Theorem 2, provided independently by S. Fajtlowicz in [16,
Theorem 2], and G. Bacso and Z. Tuza in [3, Theorem 1]. Another of Bacsd's
and Tuza's theorems moreover characterizes the case of equality for Theorem 2.
For an integer k, a vertex v of a graph G is called a k-center of G provided each
vertex of G is within distance k of v. Thus, the center of GG is the set of all r-
centers.

Theorem 3. (Bacsé and Tuza) Let G be a connected graph. Then
p(G) = 2r(G) — 1 if and only if for every connected induced subgraph H of G,
r(H) < r(G) and each vertex of H is within distance 7(G) — 2 of an 7(G)-
center of H.

Fajtlowicz's interest in Theorem 2 was motivated by studying the case of
equality for the following theorem, which is an immediate consequence of
Theorem 2. The statement of this theorem is the first announced conjecture of
Graffiti; two different proofs independent of Theorem 4 are given in [17] and
[18].

Theorem 4. (Graffiti 0, Fajtlowicz and Waller) Let G be a connected graph.
Then

a>r

The characterization of equality for Theorem 4 remains open and is likely
difficult; recently, Fajtlowicz proved the following conjecture, which is at least
as strong as Theorem 4 (outside of cliques) and sheds some light on its case of

equality.
Theorem 5. (Fajtlowicz [11]) Let G be a connected graph. Then
a>r+pu—2

Graffiti.pc has offered the following opinion on the case of equality for
Theorem 2. For a connected graph G, let dp = dp(G) denote the number of



pairs of vertices at distance d from one another (i.e. the number of pairs of
vertices at diametrical distance).

Conjecture 1. (Graffiti.pc 36) Let G be a connected graph. Then
p=2r/dp

Hence, according to Graffiti.pc's conjecture, one can only have p = 2r — 1
if the number of pairs of vertices at diametrical distance is more than one.
Clearly, beyond the truth of the conjecture, it would be interesting to discover its
relationship to Theorem 3, if any exists.

One of Graffiti.pc's conjectures about the tree number echoes Conjecture 1.

Conjecture 2. (Graffiti.pc 84) Let G be a connected graph. Then
t>2r/é

While we do not address the problem of upper bounds in this paper, we did
encounter the following upper bound on p in our research, which interested us
because it can be stated in terms of invariants familiar to Graffiti.pc.

Theorem 6. (J. Harant et al. [20]) Let G be a graph. Then

4une
P= 6(2e +n)

Finally, let dom = dom(G) denote the domination number of a graph G,
i.e. the size of the smallest subset of vertices A such that each vertex of G is
either contained in A or adjacent to some vertex of A. Graffiti.pc conjectured the
following, which makes an entertaining exercise and which the authors have not
seen stated elsewhere. We defer all proofs to the last section.

Proposition 2. (Graffitipc 105) Let G be a non-degenerate connected graph.
Then

Part ii) The forest number

On the other hand, there is a fairly large literature of papers dealing with the
forest number of a graph, dating from the 1980's through the present. See, for
example, [1], [7], and [23]. Many of these papers are concerned with
establishing lower bounds for f in certain restricted classes of graphs, such as
cubic, triangle-free graphs or bipartite graphs. Contemporary interest in this
invariant has remained significant, in part due to interest in its complementary



invariant, known as the decycling number (see {4], [5]). The decycling number
of a graph is the minimum number of vertices that must be deleted from the
graph in order to yield an acyclic graph. Again, the goal of many researchers has
been to exactly determine or establish upper bounds on the decycling number in
restricted classes of graphs. Some interesting recent results on the forest number
are due to N. Alon, D. Mubayi, and R. Thomas and are contained in [1].

Theorem 7. (Alon, Mubayi, and Thomas) Let G be a graph. Then
n—a
> -
fzat (A+1)?
Another noteworthy result is due to M . Zheng and X. Lu [23].

Theorem 8. (Zheng and Lu) Let G be a connected, cubic, triangle-free graph
withn > 8. Then

e[y

Several of Graffiti.pc's conjectures about the forest number of a graph can
be construed as attempts to improve Proposition 1. Let f; = f1(G) denote the
number of vertices of degree 1 in a graph G. (The authors refer to this invariant

as the frequency of degree one.) Here is an example of such a conjecture that is
not difficult to prove.

Proposition 3. (Graffitipc 47) Let G be a connected graph. Then
fzd+fi—-1

Thus for graphs with frequency of degree one greater than one,
Proposition 3 duplicates or improves Proposition 1.

The proof of Proposition 3 is easily extended to prove the following two
similar propositions. Let g = g(G) denote the girth of a graph G, that is, the
minimum order of a cycle in G. By the same token, let ¢ = ¢(G) denote the
circumference of G, that is, the maximum order of an induced cycle in G.

Proposition 4. (Graffiti.pc 48) Let G be a connected graph. Then

fz2g+fi—-1

Proposition 5. Let G be a connected graph. Then

f2c+fi-1



On the one hand, since diameter is defined for every comnected graph,
Proposition 3 may be considered better than Proposition 4. On the other,
however, there are many graphs for which girth is greater than diameter; some
examples include cycles, complete graphs and the Petersen graph. While
Proposition 5 is clearly an improvement over Proposition 4, for reasons that
remain unclear to the authors it was not conjectured by Graffiti.pc!.

The following theorem is one of the main results of this paper.

Theorem 9. (Graffiti.pc 67) Let G be a connected graph. Then
fzd+p—2

Here again, one may wonder about replacing d with g or ¢. But this time, for
instance, cycles on at least 4 vertices are counterexamples to both f > g+ p — 2
and f > c+p—2. '

Both Graffiti.pc and Graffiti are fond of making conjectures about average
distance invariants. For example, probably the best known conjecture of Graffiti
is the basis for the following theorem due to Chung [8].

Theorem 10. (Graffiti 2, Chung) Let G be a connected graph. Then
a>D

Let A and B be two subsets of the vertices (not necessarily disjoint) of a
connected graph G. Then we use D(A,B) to denote the average distance
between pairs of distinct vertices, one of which is in A and one of which is in B.
Hence D(G,G) = D(G) = D.

Conjecture 3. (Graffitipc 74) Let G be a connected graph with boundary B.
Then

f >2D(B,G)

It is easy to naively conclude that this conjecture provides a generalization
of Theorem 10, given that 2a: > f as implied by Proposition 1, by assuming that
D(B,G) > D. Indeed, Graffiti.pc at one time made this very conjecture.

Conjecture 4. (Graffiti.pc 22) Let G be a connected graph. Then
D(B,G)>D

1 One explanation may be that what Graffiti.pc actually conjectures is a system of inequalities as
described in [12]. For forest number the system of eleven inequalities is listed in [9].



However, this conjecture is false, as demonsirated by the following
counterexample, where D(B,G) = 2.57 and D =~ 2.62.

Figure 1: Counterexample to Conjecture 4.

Part iii) The bipartite number

While there are many papers in the literature that explore bounds for
maximum induced bipartite subgraphs of a graph, virtually all of these define the
maximum subgraph in terms of the number of edges (see, for example, [2], [6],
and [19]). One of the few results that pertains to the maximum order of an
induced bipartite subgraph is given by Fajtlowicz in [16], as a modest
improvement on the lower bound for b implied by the Theorem 2. Once again,
Graffiti.pc repeated this conjecture.

Theorem 11. (Fajtlowicz) Let G be a connected graph. Then
b>2r

Fajtlowicz states this theorem as an immediate consequence of his
generalization of Theorem 2 mentioned earlier, however, the theorem can be
derived directly from Theorem 2, as we shall demonstrate. The theorem can also
be derived easily from a result due to O. Favaron, M. Maheo, and J-F. Sacle [18]
that we quote in the proof of Theorem 13.

The primary motivation for the authors to include the invariants b, f, t, and
p in Graffiti.pc was their curiosity about Theorem 2 along with the following
conjecture, which is one of the best known open conjectures of Graffiti. This
conjecture was first circulated in 1992 [15], and later by D. West in 1996 [21].

Conjecture 5. (Graffiti 747) Let G be a connected graph. Then
b>2D

What makes this conjecture interesting is that unlike Conjecture 3, this
conjecture does indeed provide a generalization of Theorem 10, given that
2a > b as implied by Proposition 1.

The following theorem is a slight strengthening of Theorem 9 for b and is
also one of the main results of this paper.



Theorem 12. (Graffiti.pc 13) Let G be connected graph. Then
b>d+pu—1

The next conjecture is at least as strong as Theorem 11 for graphs other than
cliques.

Conjecture 6. (Graffitipc 16) Let G be a connected graph. Then
b>2(r—1)+u
Conjecture 6 remains open, but we prove the following weaker result.
Theorem 13. Let G be a connected graph. Then
b>2r+u—>5

To close, we state the following unnumbered? conjecture of Gaffiti.pc. Note
that this conjecture, when combined with the fact that o > r+ u—2 from
Theorem S, implies a slightly weaker version of Conjecture 6, namely,
b>2r+4+u-3

Conjecture 7. (Graffiti.pc) Let G be a connected graph. Then

b>r+a-1

Recall by Theorem 4 that o > r, thus one might interpret Conjecture 7 as an
attempt to match or improve Theorem 11 (outside of the case of equality for
Theorem 4). This conjecture remains open as well, however, notice that if we
apply the conjecture to trees we get the inequality n > r+ o — 1. A stronger
version of this inequality is a conjecture of Graffiti and is true for connected
graphs in general; it can be proven using the results of [16].

Proposition 6. (Graffiti 120, Fajtlowicz) Let G be a connected graph. Then

n>r+o

2 Graffitit.pc periodically displays its "preliminary” list of conjectures dynamically while executing. This
unnumbered conjecture was eventually removed from the final list of conjectures.



Proofs

Proof of Proposition 2. Let I be a maximum independent set and let D be a
minimum dominating set. Clearly o > dom. Define a function f: I —>D as
follows. If x € I N D, then f(z) = z. Otherwise, if x € I — D, choose y € D
such that y is adjacent to z. Let f(z) = y. Next choose z € D such that | f~1(z)]
is maximum. Now |f~1(z)| > [ﬁ] > 1. If z € I, then |f~1(2)] = 1, which
a+1

om

" o . )
implies e 1 and < 2. Since G is non-degenerate and connected, z
om

is adjacent to some vertex a. Thus ¢ > 2> %}. If ze D—1, then
z ¢ f7}(z) and f~1(z) U {z} induces a star in G. Moreover,

« a+1
1> — 1>
]+ _dom+ = dom’

[¢]

dom

t> DU {H =1/ +1 2]

and we are finished. [J

Proof of Propositions 3, 4, and 5. Let D be the set of vertices of a diametric path
of G. Then |D| = d + 1. Let F be the set of vertices of degree one of the graph.
Since the sets D and F' have at most two vertices in common and clearly the
vertices of DU F induce a forest, f > (d+ 1)+ (fi —2)=d+ fi— 1. If the
graph is not acyclic, the argument is similar for f > ¢+ f; — 1, from which
f > g+ f1 — 1 follows by transitivity. O

Alternative proof of Theorem 11. By way of contradiction, suppose G is a
counterexample. We know by Theorem 2 that there exists an induced path of
order at least 2r — 1, call it P. Now P must have order exactly b = 2r — 1, or
we are finished. Let ¢ be the unique center vertex of P. Properly color the
vertices of P red and green. So the endpoints of P have the same color. But each
vertex v of G outside of P must be adjacent to both a red and green vertex of P,
or b > 2r and G is not a counterexample. Thus v must be adjacent to an interior
vertex of P. Then the eccentricity of cin G is (b—1)/2=(2r—2)/2=r—1,
a contradiction. O

Proof of Theorem 13. We first state a lemma due to Favaron, Maheo, and Sacle
{18].



Lemma. Let G be a connected graph and suppose c is a vertex in the center of G
such that the number of vertices at distance r from c is minimized over the
vertices in the center. Then there exist vertices u;,v; for 0 < i < r such that u;
and v; are non-adjacent, and the distance from c to both u; and v; is i.

Now choose a vertex c¢ in the center of G as described in the lemma. In
addition to the vertices u;, v; given by the lemma, let 4y = ¢ and let u, be any
vertex at distance r from c. For even values of i, where 0 < ¢ < r, color the
vertices u;, v; red. For odd values of i, color these vertices green. Because the
vertices u;, v; are non-adjacent and are both at distance i from ¢, then no two
vertices of the same color can be adjacent to one another. Hence the subgraph B
induced by the u;, v; is bipartite. It immediately follows that b > |B| > 2r.

Next let v be a vertex such that its local independence is maximum among
all vertices of G. Moreover, let IV be a largest independent set induced by the
neighbors of the v. Assume the distance from v to ¢ is k where k is odd (the
argument is symmetrical if k is even). Then clearly each vertex of N is at
distance either k — 1,k, or k+ 1 from ¢. Consider the subgraph B’ induced by
the vertices (B — {uk-1, k=1, Uk, Vk, Uk+1, Vk+1}) UN U {v}. We color the
vertices of (B’ N B) — (N U {v}) as before, but we color the vertices of N red
and the vertex v green. It is easy to see that no two vertices of the same color are
adjacent to one another, i.e. B’ is bipartite. Therefore, b > |B’|
> |(B = {ur—1, k=1, Uk, Uk, U1, V1 }) UN U {0} 2 2r =6+ p+ 1
= 2r 4+ p — 5, and we are finished. O

Proof of Theorems 9 and 12. Let D = {vy,v9, ...,v441} be the set of vertices of
a diametric path of G such that v; is adjacent to v;,1, for ¢ = 1,2..., d. If the
diameter of the graph is one, then the graph is complete and
b= f=2>1=d+ p— 1. Thus we will assume that d > 2, thatis |D| > 3.

Let v be a vertex such that its local independence is maximum among all
vertices of G; we will refer to v as a p-vertex. Let N = {n,ny, ...,n,} be a
largest independent set induced by the neighbors of the u-vertex, v. We proceed
in two cases. First, we assume that v is a vertex in D, and second that it is not a
vertex in D. In either case, since the vertices of D induce a diametric path, we
make the following observations.

1) If a vertex of a set V — D is adjacent to two vertices of D, then as
labeled in D, Itheir indices will differ by at most two.
2) The sets D and N have at most two vertices in common.

Case 1. Suppose that the y-vertex, v, is a vertex on the diametric path
induced by the vertices of D, say v = vy, (see Figure 2).
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Figure 2: Case 1. Assume v is in D.

If the p-vertex is an endpoint of the diametric path, without loss of
generality, say it is v;. In this case, each vertex of N must be adjacent to either
vertex vy or vs, otherwise the vertices of D do not induce a diametric path. If
ve € N, the d + p— 1 vertices of N U (D — {v;}) clearly induce a tree. If
vy & N, the d + p — 1 vertices of N U (D — {v1,v2}) clearly induce a forest.
Thus, for the remainder of this proof we assume that 2 < k < d (that is, the pu-
vertex, v, is not an endpoint of a diametric path).

Since we have assumed that the py-vertex is a vertex vg of D, by (1) we
easily deduce the following.

?3) If any vertex of N is adjacent to vertices of D — {vk}, then the only
possibilities are among the vertices vk_.g, Vk—1, Uk+1, OF vkt (if they exist).

By (2) the vertex sets D and N have at most two vertices in common; thus,
we consider three subcases.

Case 1.a. Assume that D and N have exactly two vertices in common. In
this case, since the p-vertex is vertex vy, clearly the two common vertices must
be vertices vx—; and vy 1. If no vertex of N — D is adjacent to a vertex of D,
then clearly the vertices of NUJD induce a tree, in which case
b> f>t>d+ u— 1, thatis both results follow.

On the other hand, if some vertex n; of N — D is adjacent to a vertex of D
(other than vy), then by (3) and since vi_; and vii1 are in N, vertex n; is
adjacent to either vx_» or viyp. We demonstrate a 2-coloration of the vertices of
N U D from which the result for b follows. Color the vertices of N green (see
Figure 3; the boxes will represent green) and color the vertices vg—g, vk, and
Ug+2 red (see Figure 3; the circles will represent red). By (3), the remaining
vertices of D, not yet colored, are easily colored red or green. In this case, all
vertices of D and N are colored, and since they have two vertices in common,
b>d+pu—-1.

Since vertices of N — D are adjacent to at most one of wvg_3 or vgig
(otherwise the vertices of D do not determine a diametric path), we see that the
vertices N U (D — {vi}) induce a forest. Thus, f > d+ pu — 2.
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Figure 3: A 2-coloration for a subcase of Case 1.a.

Case 1.b. Assume that D and N have exactly one vertex in common;
without loss of generality, suppose that it is vertex vj.1. In this case, since vz_;
is not in N, there exists a vertex, say n;, in N adjacent to vx_; (see Figure 4). By
(3) and since vy is in N, if a vertex of the set N is adjacent to vertices of
D — {vi}, then the neighbors are among the vertices vg—_g, Uk—1, OF Ug42. This
and (1) allow us to make the following observation.

@ If a vertex of N is adjacent to two vertices of D — {v;}, then the
neighbors are the vertices v;—s and vg—;.

+2

Figure 4: Case 1.b. Sets N and D have only vy in common.

Next, we demonstrate a 2-coloration of the d 4 y — 1 vertices of the set
N U (D — {vg-1}). Color the vertices of N (which includes vertex vi4+1) green,
and color the vertices vx—_3, g, and U2 red (see Figure 4). By (3), the remaining
vertices on the diametric path, D — {vx_2, Vg—1,Vk, Vk+1,Vk+2}, are easily
colored red or green. Since all but one of the vertices of D have been colored, all
vertices of N have been colored, and D and N have exactly one vertex in
common, b>d+ u—1. Moreover, by (4), we see that the vertices
N U (D — {vg-1,vx}) induce a forest. Thus, f > d + pu — 2. :

: (o)
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Figure 5: Case 1.c. Sets N and D have no common vertices.



Case I.c. Suppose that N and D have no common vertices, that is, suppose
neither of vx_; or vxy1 is in N. In this case, there exists a vertex (or vertices) of
N adjacent to v;—; and v (see Figure 5 for example). We will demonstrate a
2-coloration of the d + u — 1 vertices of N U (D — {vk-1,vk+1}) (see Figure 5).
Color the vertices of N green, and color the vertices vi—s, vk, and vi4s red. By
(3), the  remaining  vertices on  the  diametric  path in
D — {vx_2, k-1, Uk, Uk+1, Vk+2} are easily colored red or green. All but two of
the vertices of D have been colored, and all vertices of N have been colored.
Since D and N have no vertex in common, b > d + p — 1.

By (1) and (3), a vertex of N is adjacent to at most one of vz_; Or Vg42.
Thus we see that the vertices N U (D — {vg-1, vk, vk41}) induce a forest.
Hence, f >d+p—2.

Case 2. Assume that the y-vertex, v, is not a vertex on the diametric path
induced by the vertices of the set D. By (2) the vertex sets D and N have at
most two vertices in common, thus we consider three subcases.

Case 2.a. Assume that D and N have exactly two vertices in common. By
(1), and considering N is an independent set, the indices of the two common
vertices, as labeled in D, differ by exactly two. Without loss of generality, let the
two vertices common to /N and D be denoted as v; and vg 5.

If no vertex of N — {vg, vg42} is adjacent to vertices of D, then the vertices
of DUN clearly induce a forest (a path and isolated vertices) on d+ p — 1
vertices, in which case, both results follow.

Since the vertices of D induce a diametric path and the p-vertex, v, is
assumed to be adjacent to both v and v, the following observations hold.

5) If a vertex of N — {uvj, vx+2} is adjacent to a vertex of D, then the only
possible neighbors are among the vertices in the set {vg—1, Vg1, Vk+3}-

(6) A vertex of N is not adjacent to both of the vertices vx_; and vg,3 of
D.

Figure 6: Case 2.a.



In this case we exhibit a 2-coloration of the d + p — 1 vertices of the set
DU N. Color all vertices of N green (indicted by the boxes around vertices as
seen in Figure 6), and color vertices vk_1,vkt1,and vgy3 red. By (5) the
remaining vertices of D — {vk_1, Uk, Uk+1, Vk+2, Uk+3} are easily colored red or
green. In this case, since we have colored all vertices of N, and all vertices of
D, b>d+p—1.

By (5) and (6) a vertex of N is adjacent to at most one vertex of the set
D — {vg41}- Thus, the vertices N U (D — {vg41}) induce a forest, from which it
follows that f > d + p — 2.

Case 2.b. Assume that D and N have exactly one vertex in common.
Without loss of generality, let the vertex common to N and D be denoted as v.
If no vertex of N — {vy} is adjacent to a vertex of D then the vertices of DU N
clearly induce a forest (a path and isolated vertices) on d + p — 1 vertices, in
which case, both results follow.

Since the vertices of D induce a diametric path and the p-vertex, v, is
assumed to be adjacent to vy, the following observations hold in this case.

@) If the u-vertex, v, is adjacent to vertices of D (other than vy), then the
only possible neighbors are among the vertices in the set
{vk-2, Vk—1,Vk+1, Vk+2}, but not to all; we indicate these possible edges by
dashed lines in Figure 7.

®) If a vertex of N — {v;} is adjacent to a vertex of D, then the only
possible  neighbors are among the  vertices in  the  set
{vk=3, Vk—2, Vk—1, Vk+1, Vk+2, Vk+3 } (these are the vertices labeled in Figure 7).

Figure 7: Case 2.b.

By (7) the vertex of D with the smallest index that may be adjacent to vertex
vis k — 2. If v is adjacent to vertex v;_q, then by (1) vertex v is not adjacent to
either of the vertices vx 1 or vg.o. Further, if v is adjacent to vertex vi_s, then no
vertex of N is adjacent to either of the vertices vg4g or vg+3 (since the vertices of
D induce a diametric path). Thus, in the case that v is adjacent to vertex vy_s,
the only vertices of D that we need deliberately demonstrate a 2-coloration for
are the vertices {vg—3, Uk—2, Vk—1, Uk, Vk+1} (they are labeled in Figure 8). In this
case, we exhibit a 2-coloration of the d-p—1 vertices of the set



N U {v} U (D — {vk-3,vk-1}). Color all vertices of N green, and color vertices
v,Vg—3,and wvgyg red. The remaining vertices of the diametric path
D — {vj—3, k2, Vk—1, Uk, Uk+1} are easily colored red or green. In this case we
have colored all vertices of IV, all but two vertices of D, and we have colored
the p-vertex. Thus b > d + p — 1, and the result follows in this case. In order to
show that, in the case that v is adjacent to vertex vg_s, the result for the forest
number also holds, we observe that by (1) no vertex of N is adjacent to both
vertices vx—3 and wgy1; thus, the vertices N U (D — {vk—g,vx-1}) induce a
forest, from which f > d + p — 2 follows.

k-3 Vi-2 Vk-1 Vi 1

Figure 8: Case 2.b. The subcase that v is adjacent to v;_.

Next, let us assume that the y-vertex, v, is not adjacent to vertex v;_s but is
instead adjacent to vgx; (as seen in Figure 9). Then by (1), vertex v is not
adjacent to vertices vx,2 and vi+3; and no vertex of N can be adjacent to vertex
vk+3 (otherwise the vertices of D do not determine a-diametric path). Thus, we
need not demonstrate the coloration of vertex v3, which by (8) implies that

9) We need only consider the vertices {vx_3, Uk—2, Vk—1, Vk, Vk+1, Uk+2} Of
D.

We proceed in this case by considering two further subcases: First that the
u-vertex, v, is adjacent to vertex vy41; and second that it is not adjacent to vertex

Vk+1.

Case 2.b.i. Suppose that v is also adjacent to vertex vt (as seen in Figure
9). Then the vertices of N cannot be adjacent to vertex vx_3 (otherwise D does
not determine a diametric path). Thus by (9), the only vertices of D we need
focus on are the vertices {vVg—2, Vk—1, Vk, Vk+1, Vk+2} (they are labeled in Figure
9). We exhibit a 2-coloration of the d-+ pu—1 vertices of the set
N U {v} U (D — {vk-1,vk+1}). Color all vertices of N green, and color vertices
v, Ug—2,and wvgio red. The remaining vertices of the diametric path
D — {vk-2, Vk—1, Vk, Uk+1, Vk+2} are easily colored red or green. In this case we
have colored all vertices of IV, all but two vertices of IJ, and we have colored
the vertex v; thus, b6 > d + p — 1. In order to show that, in this subcase, the
result for the forest number also holds, we observe that by (1) no vertex of N is
adjacent to both vertices wv;—o and wviy9; thus, the vertices
N U (D — {vg-1, Vk+1}) induce a forest, from which f > d + p — 2 follows.



V-2 Va-1 . Vi Vi+1 Vi+2

Figure 9: Case 2.b.i. The subcase that v is adjacent to vgy;.

Case 2.b.ii. Suppose that v is not adjacent to vertex vi1. We are still in the
subcase that the u-vertex, v, is not adjacent to vertex v;—_o but is instead adjacent
to vg—1. (This arrangement can be seen in Figure 10.)

If a vertex of NV is adjacent to vertex vi_3, then no vertex of N is adjacent to
vertex vi42 (see Figure 10), and by (1) vertex v cannot be adjacent to vjo. Thus
by (9), among the vertices of D we need only deliberately demonstrate a
coloration of the vertices {vk_3, Vk—2, Vk—1, Uk, Vk+1}- In this case, we exhibit a
2-coloration of the d + p — 1 vertices of the set N U {v} U (D — {vk_2,Vk-1})-
Color all vertices of NV green (illustrated by the boxes around vertices in Figure
10), and color vertices v,vx—3,and vxi; red. The remaining vertices of the
diametric path D — {vg—3, Vg3, Vk—1, Uk, Uk+1} are easily colored red or green.
In this case we have colored all vertices of IV, all but two vertices of D, and we
have colored the vertex v; thus b > d + p — 1. In order to show that, in this
subcase, the result for the forest number also holds, we observe that no vertex of
N is adjacent to both vertices wvx—3 and wvg4+g; thus, the vertices
N U (D — {vg-2,vk—1}) induce a forest, from which f > d + p — 2 follows.

%3 Vi.2 Vi-1 Vi +1

Figure 10: Case 2.b.ii, and a vertex of N adjacent to vj_3.

If no vertex of N is adjacent to vertex vx—3 (as seen in Figure 11), then by
(9), among the vertices of D we need only deliberately demonstrate a coloration
of the vertices {v—3, Vk—1, Uk, Uk+1, Uk+2}- In this case, we exhibit a 2-coloration
of the d + p — 1 vertices of the set N U {v} U (D — {vg_1,vk+1}). Color all
vertices of N green, and color vertices v, vx—g, and vky red. The remaining
vertices of the diametric path D — {vy.q, Vg1, Uk, Uk+1, Vk+2} are easily colored
red or green. In this case we have colored all vertices of IV, all but two vertices
of D, and we have colored the vertex v; thus b > d + p — 1. In order to show
that, in this subcase, the result for the forest number also holds, we observe that



no vertex of N is adjacent to both vertices viy—_2 and wviyo; thus, the vertices
N U (D — {vk-1, Vk+1}) induce a forest, from which f > d + p — 2 follows.

Va2 Vi-1 Vi Vi+1 Vi+2

Figure 11: Case 2.b.ii, and no vertex of N adjacent fo Vg—3.

To complete the proof of case 2.b, we assume that v is not adjacent to either
of the vertices vg_3 or vk—1. In this case by (7), vertex v can be adjacent only to
vertex vg4; or vertex vgio of D — { v}

If vertex v is adjacent to vertex vgo, then clearly no vertex of IV is adjacent
to either vertex vx—_3 or vg—g, which by observation (8) implies that we need only
focus on vertices {vg—1, Vk, Vk+1, Vk+2, Vk+3} Of the set D. In this case, we
exhibit a 2-coloration of the d + p — 1 vertices of the set N U (D — {vg42}).
Color all vertices of N green, and color vertices vy_1,Ux+1,and vgy3 red. The
remaining vertices of the diametric path D — {vk_1, Uk, Uk+1, Vk+2, Vk+3} are
easily colored red or green. In this case we have colored all vertices of N, all but
one vertex of D, and since we are in the case that N and D have exactly one
vertex in common, b > d+ u — 1. In order to show that, in this subcase, the
result for the forest number also holds, we observe that no vertex of N is
adjacent to both vertices w;-; and wviy3; thus, the vertices
N U (D — {vg+1, Vk+2}) induce a forest, from which f > d + p — 2 follows.

If vertex v is not adjacent to vertex vg.2 but is instead adjacent to vertex
V41, then no vertex of N is adjacent to vertex vx_3, which by observation (8)
implies that we need only focus on vertices {vx—g, Vk—1, Uk, Uk+1, Uk+2, Vk+3} Of
D. If some vertex of N is adjacent to vertex vi_o, then no vertex of N can be
adjacent to vertex wvgi3. In this case we only need focus on vertices
{vk—2, Vk—1,Vk, Vk+1,Vk+2} Of D. Similarly if some vertex of N is adjacent to
vertex vi+3, then no vertex of N can be adjacent to vertex vx—s. In this case we
only need focus on vertices {vg—1, Uk, Uk+1, Vk+2, Vk+3 } Of D. In either case, we
easily exhibit a 2-coloration of a d + p — 1 vertex set; in the former we color
NU{v}U (D — {vk—2, vkg+1}) and in the latter we color N U {v}U
(D — {vr41, vk+3}). In order to show that, in these cases, the result for the forest
number also holds, we observe that in the former set, no vertex of NV is adjacent
to both vertices vy and vyo; thus, the vertices N U (D — {vg—1, vg4+1}) induce
a forest; and for the latter set, we observe that no vertex of IV is adjacent to both
vertices vx—1 and vgys; thus, the vertices N U (D — {vg41,vk+2}) induce a
forest. Hence, in either case, f > d + p — 2 follows.



Case 2.c. Suppose that the sets N and D have no vertices in common. If the
p-vertex, v, and the vertices of N are not adjacent to vertices of D, thenthe
vertices of N U DU {v} induce a forest (the union of a path and a star), from
which is follows that f > d + p + 2. If the u-vertex, v, is not adjacent to any
vertices of [ but vertices (or a vertex) of N are adjacent to vertices of D, then
we will assume that vy, is the one with the smallest index (as in Figure 12). In
case other vertices of N are adjacent to a vertex of D), then the only possible
neighbors are among the vertices in the set {vg, Vk+1, Uk+2, Uk+3, Uk+4} (these are
labeled in Figure 12). In this case, we exhibit a 2-coloration of the d + u vertices
of the set N U{v}U (D — {vgs1,vk+3}). Color all vertices of N green
(illustrated by the boxes around vertices in Figure 12), and color the vertices
Uk, Vks,and vppq rted. The remaining vertices of the diametric path
D — {vg, Up+1, Vk+2, Vk+3, Vk+4} are easily colored red or green. In this case we
have colored all vertices of N, all but two vertices of D, and we have colored
the vertex v; thus b > d + u. Since no vertex of N is adjacent to both vertices vg
and vp44, the vertices N U (D — {vg41,Vk42, Vk+3}) induce a forest of order
d+p-2.

Vi Vi+t V2 Vi+3 ke

Figure 12: Case 2.c. The subcase v is not adjacent to vertices of D.

In the remainder of Case 2.c, we assume that vertex v has neighbor(s) in D.
We will assume that vy, is the one with the smallest index. In this case, since the
vertices of D determine a diametric path we make the following observations.

(10) The only possible neighbors of vertex v in D are among the vertices
Uk, Uk+1, and Vgpo.

(11) The only possible neighbors of a vertex of N in D are among the
vertices in the set {v—3, k2, Vk—1, Uk, Vk+1, Uk+2, Uk+3 | (these are labeled in
Figure 13).

Furthermore, the assumptions that v, and v are adjacent, and v;, is notin N,
imply the following.

(12) There is some vertex of IV that is adjacent to vertex vy.

Observation (12) and the assumption that the vertices of D determine a
diametric path imply the following.



(13) The neighborhood of the vertex set N has at most five elements in D,
and if v; is the one with the smallest index, then the neighbor with the largest
index has index at most j + 4.

*r— - @ *
V-3 Vi-2 Vi-1 173 Vi1 Vi+2 V43

Figure 13: Case 2.c. The subcase v has neighbor(s) in D.

For the rest of this proof we consider the following two subcases: That v is
adjacent to only v;; and that v is adjacent to at least two vertices of
{vk, Vkt1, Vk42}-

Case 2.c.i. Suppose that vertex v is adjacent to vertex v; but not to vertices
Up+1 and vi4g. By (12) we know that some vertex of N, say n;, is adjacent to
vertex vx. Let D* be the set of vertices of D that are adjacent to vertices of V.
By (13) we know that D* has at most five vertices, and we have assumed that vy,
is among them.

If v, has the smallest index among the vertices of D*, then by (11) and (13)
the vertex with the largest index has index at most k£ + 3. Thus in this case, we
exhibit a  2-coloration of the d+pu vertices of the set
N U {v} U (D — {vk, vg+2}). Color all vertices of N green (illustrated by the
boxes around vertices in Figure 14), and color vertices v, vx41, and vi 3 red. The
remaining vertices of the diametric path D — {vg, Vx+1, Vk+2, Vkt+3} are easily
colored red or green. In this case we have colored all vertices of IV, all but two
vertices of D, and we have colored the vertex v; thus b > d + u. Moreover, in
this case the result for the forest number follows since one can exclude for
example wvg;1, by which one easily sees that the vertices of
N U (D — {vk, vk+1, Vk+2}) induce a forest of order d + p — 2.

n2

ni

@)oo —e
Vi Vi+1 Vi+2 Vi+3

Figure 14: Case 2.c.i.



Next, we consider the case that the vertex of smallest index among the
vertices of D* has index less than k. Let 7 be the smallest index of the vertices of
D*(where k —3 < j <k —1). Then by (13) the vertex with the largest index
has index at most j+ 4. Thus in this case, we exhibit a 2-coloration of the
d+p—1 vertices of the set N U {v}U (D — {vj+1,vj4+2,v;43}). Color all
vertices of N green, and color vertices v; and v;44 red. The remaining vertices
of the diametric path D — {vj, vj+1,vj4+2,V;43,Vj+4} are easily colored red or
green. In this case we have colored all vertices of N, all but three vertices of D,
and we have colored the vertex v; thus b > d + u — 1. Moreover, in this case the
result for the forest number follows since one can exclude for example v;, by
which one easily sees that the vertices of N U {v} U (D — {vj, vj31,Vj42,vj+3})
induce a forest of order d + p — 2.

Case 2.c.ii. Suppose that vertex v is adjacent to vertex v; and to at least one
of the vertices vxy; Or vg+2. By (12) we know that some vertex of IV, say n,, is
adjacent to vertex vg. By (13) we know that we only have to demonstrate a
coloration of vertices chosen from at most five consecutive vertices of D, and
that v, is one of these five consecutive vertices. If vertex v is adjacent to vertex
Uk41, then the smallest index of the neighbors of N in D is at least k — 2. If v is
adjacent to vertex v o then the smallest index of neighbors of N in D is at least
k — 1. Hence, in light of (13) we have that the five consecutive vertices under
consideration are among the vertices {vk—g,Vk—1, Uk, Uk+1, Vk+2, Vk+3}. 1INt
particular, if there are five vertices of D in the neighborhood of N, they will be
either {vx_1,Vk, Vk+1, Vk+2, Vk43}; O {Uk—2, Vk—1, Vk, Vk41, Vk+2}. In either case,
we exclude the three interior vertices (that is we do not exclude the smallest and
the largest indexed vertices, see Figure 15). Since in either case no single vertex
of N is adjacent to both the smallest and largest indexed vertices, then
b>f>d+u-1.

Figure 15: Case 2.c.ii.
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