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) Abstract

We discuss two conjectures of Graffiti generalizing the theorem that the
independence number of a simple, connected graph is not less than its radius.
The first of these conjectures states that the independence number is not less
than the radius plus the path covering number minus one. We demonstrate a
family a counterexamples to this conjecture, which we also use to partially
resolve one of Graffiti's follow-up conjectures, namely that the independence
number is not less than the floor of half the radius plus the path covering
number. In particular, we prove a stronger version of this inequality for trees.
Keywords: Graffiti, independence number, path covering number, radius.

Introduction

Graffiti, a computer program that makes conjectures, was written by S.
Fajtlowicz. A later version of this program, called Dalmatian, was coauthored
with E. DeLaVina. An annotated listing of several hundred of Graffiti's
conjectures, dating from the program's inception in the mid-1980's, can be found
in [6]. Graffiti has correctly conjectured a number of new bounds for several
well-studied graph invariants; bibliographical information on resulting papers
can be found in [1].

All graphs considered are simple, connected and finite of order n. We let
a = a(G) denote the independence number of a graph G. Two simply stated,
well known lower bounds for the independence number are expressed in the
following two theorems. Theorem 1 results from one of Graffiti's earliest
conjectures. Alternative proofs of this theorem are given by O. Favaron (see [6])
and Fajtlowicz (see [4]); the result also follows from a lemma due to F. Chung
quoted in [3]. We let r = r(G) denote the radius of a graph G.

Theorem 1 (Fajtlowicz and Waller): Let G be a graph. Then

azr.

Theorem 2 is mentioned by L. Lovasz in [8]. A collection of vertex disjoint
paths which cover all vertices of a graph G is called a path covering of the graph
G. The size of a smallest path covering will be called the path covering number
of G; we use p = p(G) to denote this number.



Theorem 2 (Lovasz): Let G be a graph. Then
azp

It is easily shown that complete graphs are the only cases of equality for this
theorem. In general, both of these invariants are poor approximations for the
independence number. For example, consider random graphs with fixed edge
probability. Even so, it is interesting to note that these invariants seem
complementary to one another in some sense. In particular, the path covering
number is a good bound for stars and binary stars, but not for paths, cycles and
barbells. On the other hand, the radius is a good bound for paths, cycles and
barbells, but not for stars or binary stars.

In light of this observation, the following of Graffiti's conjectures was of
particular interest to us.

Conjecture 1 (Graffiti [5]): Let G be a graph. Then
azr+p—1

N

The “—1” term is required, for otherwise cliques with more than one vertex
would be obvious counterexamples. We will demonstrate counterexamples
(though not unique) to this conjecture for all » > 4. In fact, we will demonstrate
a family of trees {7} | k = 1,2, 3, ...} where

m(T2k) + p(Tox) — (Tox) = k.
Note that the inequality

p
+ 2
follows immediately from the inequalities o > r and o > p. It is thus natural to

ask if there exist other pairs of coefficients ¢; and ¢, such that

a2

[ R}

azc-r+eyp

Indeed, upon learning of counterexamples to Conjecture 1, Graffiti made the
following two conjectures.

Conjecture 2 (Graffiti): Let G be a graph. Then
r
> = 2
@= [2J te
Conjecture 3 (Graffiti): Let G be a graph. Then

p—1
> —,
a>r+ )



Figure 1 shows an example of equality for Conjectures 2 and 3. For this
graph, it is easy to convince oneself by inspection that @ = 5, r =4, and p = 3.
Therefore, this graph also serves as a counterexample to Conjecture 1 with

FIGURE 1: Example of equality for Conjectures 2 and 3

Conjectures 2 and 3 remain open in the general case. However, both
conjectures are true if restated for trees, as shown by the following two theorems.
The proof of Theorem 3 is the main result of this paper. Theorem 4 is proven in

[2].

Theorem 3: Let T' be a tree of order more than 2 and suppose d = d(T) is the
number of vertices contained on a path in T of maximum length (i.e. d is one
more than the diameter of T). Put x = z(T") = |d/3]. If x is even, then

2x
> X
@= (3x+2)r+p (1)

On the other hand, suppose x is odd. Then
| 2z
> .
“—(3x+1)r+” (2)

Moreover, we shall show both bounds are sharp.

Theorem 4 (DeLaVina, Fajtlowicz and Waller): Let T be a tree. Then

p—l
> | A—
az2r+ 3

The tree in Figure 1 shows this bound is sharp.

Proofs of Main Results

Counterexamples to Conjecture 1. Consider a path Ps, with 3k vertices,
Enumerate the vertices of Ps, from left to right as vg, vy, vg, ..., vsg—1. Let T be
the tree on 4k vertices formed by attaching a single edge to Ps; at each of the




vertices v; where j = 1 (mod 3). Thus T} is a star with 3 endpoints; T'; is formed
by taking two copies of T3 and adding a single edge from an endpoint of one of
the stars to an endpoint of the other; and so forth. We will show that for the tree
T,

T(Tgk) + p(Tzk) - Oz(Tzk) = k.

Proof. Clearly the radius of Th; is 3k; see Figure 2. For each of the vertices v;
where j = 1 (mod 3) and 0 < j < 6k — 2, let H; be the subgraph of Ty induced
by the vertices v, v;41, and vjig, as well as the neighbor s; of v; in Ty, not
contained in Ps;. Moreover, let Hy be the singleton vertex vy, and let Hey-o be
the subgraph induced by the vertices vgg—2, Vek—1, and sgz—2. Suppose [ is a
maximum independent subset of the vertices of Ty;. It is easy to see that
INV(H;) < 2forj> 1. Of course, ] N V(Hp) < 1.Since

V(G) = V(Ho) U V(Hl) U V(H4) U...u V(Hﬁk_Q) ,
it follows that
a(Tw) = |

|(INV(Ho)) U (INV(H))U(INV(Hy))
U...U (I NV (Hek-2))l

< 144k

But it is easy to find an independent set of size 4% + 1 in Thy, so this upper
bound is sharp.
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FIGURE 2: T, a counterexample to Conjecture 1 when k > 2

Now if we can show that p(Tb)=2k+ 1, we are finished. Let
S = {8y, 84, ..., Sex—2}. Furthermore, let Q) be the family of all minimum path
coverings of Ty. For every set C € @, let s(C) be the number of paths in C that
are singleton vertices of S. Choose C' from @ so that s(C') is maximized.

Claim: s(C') = |S|. For suppose otherwise. Then there exists a vertex s; in
S, and a path Lin C containing s;, where the length of L is more than 1. This
implies the neighbor v; of s; in Ty is also contained in L. Moreover, either v;_;
or v;41 is not contained in L. Assume vy is not contained in L (the argument is



'symmetrical in the opposite case). Let M be the path in C containing v;;. Note

that since the degree of v;;, in Ty is at most 2, we have v;,; is an endpoint of
M. We now define two new vertex-disjoint paths: the path L’ formed by joining
L~sjto M,and L” = s;. Clearly, C' = C — {L, M} U{L’, L"} is contained
in @, because C’ covers the vertices of Ty, and |C'|=|C|. But
s(C") = s(C) + 1, which contradicts our choice of C.

Our claim implies that each of the paths in C that contains a vertex of S
must in fact contain only this vertex. Then |C| > |S| = 2k. But since C € Q,
there must be only one remaining path in C, namely FPg. Hence
|C) = p(Tox) =2k +1.0 :

Proof of Theorem 3. We start by demonstrating cases of equality for each of the
lower bounds (1) and (2) given in the statement of the theorem. Following an
argument similar to the one given in the preceding proof, we can see that
a(Togr1) = 4k + 3, r(Togs1) = 3k + 1, and p(Thr+1) = 2k + 2. Next, consider
the tree T} formed by adding a single edge to exactly one of the endpoints of the
maximum path Py in Tj. Again following an argument similar to the one given
in the preceding proof, we can see that o(T3,,)=4k+3 and
p(Top41) = 2k + 2, but (T3 ) = 3k + 2. Therefore, putting

T = 2(To4q) = |d(T41) /3] =2k + 1,
we get
a(Tyyy) = 4k+3
2k+1
3k +2

2x % %
= (m) r(Toks1) + P(Toks1)-

)(3k+2)+(2k+2)

Now, consider the tree T} formed by adding a single edge to each of the
endpoints of the maximum path Pjin T}. For example, the tree in Figure 1 is
T. Following an argument similar to the one given in the preceding proof, we
can see that a(Ty,) =4k+1 and p(T3,) =2k+1, but r(Ty)=3k+1.
Therefore, again putting

z = a(Ty) = |d(Ty)/3] = 2k,
we get
a(Ty,) = 4k+1
- (____%zi 1)(3k +1)+ @2k +1)

_ (@%)T(T{k) + p(T)-



Note that the three families of trees discussed above, Ty (k > 2), T3,
(k 2 1), and T3 (k > 1) provide counterexamples to Conjecture 1 for all r» > 4
and p > 3.
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FIGURE 3: An example of a tree R in Ry,

Consider a path Py with 3k vertices. Let Ry be the family of trees formed
by attaching at most a single edge to any of the interior vertices of Pj;. See
Figure 3 for an example of a tree in R;. Likewise, for k > 1, let R} be the
family of trees formed by attaching at most a single edge to any of the interior
vertices of a path Ps;1; with 3k 4 1 vertices, and moreover let R;* be the family
of trees formed by attaching at most a single edge to any of the interior vertices
of a path Psyo with 3k + 2 vertices. We next state two lemmas useful in
simplifying the proof of Theorem 3. The proofs of both lemmas are rather
technical; we defer them to the last section.

Lemma 1: Suppose R € Ry. Ifk is even, then
2
a(R) 2 k+ p(R) = gr(R) + p(R).

On the other hand, if k is odd, then

a(R) 2 b +p(R) = 7o ) r(B) + ()

Lemma 2: Suppose R € R} UR}". Ifk is even, then
o(R) > (=22 ) r(R) + o(R)
= \3kt2 PRE):
On the other hand, if k.is odd, then

a(R) 2 (g )R+ ().

3k+1

Conclusion of proof of Theorem 3. By way of contradiction, assume there exist
trees of order more than two for which the theorem is not true. Assume 7T is such




a counterexample with the minimum number of vertices. Let d = d(T) and
x = z(T) be defined as in the statement of the theorem. Moreover, let P be a
path of maximum length in T, and let R be a subtree of T" with the maximum
number of vertices such that R contains P and R € R, U R} U R}*. Note that
r(R) = r(T), and P must have 3z, 3z + 1, or 3z + 2 vertices. If x is even, then
Lemmas 1 and 2 imply that inequality (1) holds for R, i.e.

a(R) 2 (32 )r(R) + ()

If  is odd, then Lemmas 1 and 2 imply that inequality (2) holds for R, i.e.

a(R) 2 (322 )r(R) + o(R).

Of course T' # R, otherwise we have a contradiction. Hence, there are two
possibilities. Either there exists a vertex s in 7" that is not in R but which is
adjacent to some interior vertex v of P; or, there exists a vertex ¢ in T that is not
in R but which is adjacent to some vertex s of R not in P. In the second case, s
in turn must be adjacent to some interior vertex v of P. See Figure 4. In either
case, suppose the edge joining s and v were deleted from T. Let S’ be the
connected component of the resulting graph containing s, and let 7" be the
connected component containing v. Because T’ contains P, we have
r(T") = r(R) = r(T), and by our choice of T’ either inequality (1) or inequality
(2) must hold for 7.

t® t
!

(a) (b)

FIGURE 4: Cases when T" # R

Next, suppose I is a maximum independent subset of the vertices of 7",
and C7 is a minimum path covering of T". We consider three cases.

Case 1: S’ is a singleton edge. Let ¢ be the neighbor of s in S, and label the
single-edge path joining s and v as p. See Figure 4. Then Iy U {t} is an
independent subset of the vertices of T', and Crv U {p} is a path covering of T'.
Since a(T) > |Ir U {t} = a&(T") + 1, 7(T') = r(T"), and




p(T) < |Cr U {p}| = p(T") + 1, then either inequality (1) or inequality (2)
must hold for T, a contradiction.

Case 2: S’ is the singleton vertex s. Since R was chosen to contain the
" maximum number of vertices possible, this implies there exists an endpoint w of
T that is adjacent to v, that is not contained in P, but which must be contained in
R. For otherwise, s would be contained in R. See Figure 4(a). If we assume
v & I+, then Ir U {s} is an independent subset of the vertices of T, and
Cr' U {s} is a path covering of T'. However, if v € I/, then I — {v} U {s, w}
is ‘an independent subset of the vertices of 7", and again Cp U {s} is a path
covering of T'. In any event, like in Case 1, we arrive at a contradiction.

Case 3: S’ has order more than two. By our choice of T', either inequality
(1) or inequality (2) must hold for S’. Let I5' be a maximum independent subset
of the vertices of S, and let Cs/ be a minimum path covering of S, Either of the
inequalities (1) or (2), though, imply that «(S’)—12> p(S'). Now
I U I — {s} is an independent subset of the vertices of T, and Cp» U Cg: is a
path covering of 7. Since «(T) > |IrUlIg:—{s}| =2 a(T")+a(S) -1,
r(T") =r(T), and p(T) < |Cr UCst| = p(T") + p(S’), then either inequality
(1) or inequality (2) must hold for T', once more a contradiction. [J

Remaining Proofs

Consider a path Pj; with 3k vertices. Enumerate the vertices of Pj; from
left to right as vg,v1,vy,...,V3k—1. Now suppose R € Ry, and let v; be an
interior vertex of Py (i.e. 1 < j £ 3k — 2). Then if v; has a neighbor not on Ps,
we will denote this neighbor vertex by s;. Further, for any path P of a path
covering C of R € Ry, we will refer to it as P, (or Py,), where v; (or s;) is the
endpoint of the path with the smallest index. This endpoint is referred to as the
left endpoint of the path. If both v; and s; are endpoints of a path P in C, we will
arbitrarily label P as P,, or F,. See Figure 5 for an example of such a path cover
labeling.
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FIGURE 5: Path cover labeling



Lemma 3: Suppose R € Ry. For a minimum path covering C of R, put
L, = {v | v is the left endpoint of some path in C}. Then there exists a minimum
path covering C of R with the following properties:

i) For0< j<3k—2 ifv; € V(Psy)NL, then |V(P,)| > 3.
ii) Foranysj € L, with j# 3k -2, |V(Py)| > 4.

Proof. Let C be a minimum path covering of R. In finding a minimum path
covering with properties i) and i), we will exchange paths in C as necessary,
proceeding left to right. That is, we consider left endpoints of paths in C by their
subscripts in increasing order, thus assuring that one alteration of C does not
“undo” another. Suppose that v; € V(Py) N L, for 0 < j <3k —2.If Py is a
singleton vertex, then clearly vertex s;,; must exist and furthermore must be a
left endpoint of a path in C, for otherwise C would not be a minimum path
covering. We put P°  to be the path determined by removing vertices v;;; and
sj+1 from path P, . Note that vertex v;,; must have been on P by the
minimality of C. Next, we put P;]f to be the path determined by extending P,, to

include the vertices v;y1 and sj1. In this case, the altered path covering
(C={Py, P, }) U{P}, Py .} is also a minimum covering; see Figure 6.
However, if it is the case that P,, is the singleton edge (vj, vj11), thenagain by
the minimality of C, s;,1 does not exist, but s;,2 must exist and moreover must
be a left endpoint of a path in C. Similarly, in this case the altered path covering
(C={Py; Py, }) U{{ P}, P;,,} is also a minimum path covering, where P;
and P;]f, are respectively determined by removing the vertices v;,o and s;,5 from
P, and, in turn, appending them to P, Next, if P, is the singleton edge
(vj, 85), then we relabel it P,; instead and show that property ii) holds for P,
which we demonstrate below. Thus, part i) is established.

Sj+1 Sj+1 Sj+1
+ -
PVJ ‘ PSJH Pw Pv;+z
e +oee .,.. ve e e ..-.

7] Vel Vjs2 vj Vi+l  Vjs2 v Visl  Vjs2

() (b) (c)
FIGURE 6: Path exchange

For j # 3k — 2, suppose that s; € L,. If P, is a singleton vertex, clearly v;
is not a left endpoint of a path of C. Let P, be the path in C incident with vertex
v;. Then a new minimum path covering can be constructed by removing v;4; and
the portion of path P, that follows v;41, and attaching s; to the end of P, instead.
Let us denote this modification of P, by PJ. The portion of P, that was



detached, call it P, is now the new path P, . The altered path covering
(C—{P., R}Y)U{{P},P} is obviously a minimum path covering. Let us
observe that if the left endpoint of P} is a v;, then it together with v; and s;
determine a path on at least three vertices. If, on the other hand, the left endpoint
of P} is an s;, then it together with v;, v; and s; determine a path on at least
four vertices. Next, suppose that P, is the singleton edge (s, v;). Then by the
minimality of C, clearly v;4; is not a left endpoint of a path in C, and thus s;4;
exists. Again, a new minimum path covering can be constructed by removing
v;41 and s;1 from the path Py, and attaching them to P,. Lastly, suppose that
P, is a path containing three vertices. By our convention for path labelings of a
path covering for R, the three vertices are s; v; and v;;;. Then by the
minimality of C, clearly s,y;jdoes not exist and v, is not a left endpoint of a
path in C. Thus sjo exists. Again, a new minimum path covering can be
constructed by removing v, and sj; from path P, and attaching them to P;,.
This completes the proof of the lemma. O

Proof of Lemma 1. Suppose R € Ry and let C be a minimum path covering of
R. We put L, = {v | v is the left endpoint of some path in C}, and assume that C
has the properties i) and ii) as asserted by Lemma 3. Next, we introduce notation
similar to that used in the proof of the counterexamples. That is, for each of the
vertices v; where j = 1 (mod 3) and 1 < j < 3k — 2, we let H; be the subgraph
of R induced by the vertices v;_1, vj, and v;y1, as well as any s; that exist in R
for j—1 < i < j+ 1.See Figure 7 for an example of this notation. We observe
that by the definition of Ry, there are k such subgraphs. Further, it is easily
verified that k = 2r(R)/3 if k is even, and that k = 2kr(R)/(3k — 1) whenever
k is odd.

We will show that for each of the k subgraphs Hy, Hy, ..., H3k—g we can

select a vertex b; € V(H;) not adjacent to any vertex of L, nor to any other
selected b;. The collection of such b; will be denoted as B. Since L, is an
independent set,and L, U B will be shown to also be an independent set, the
lemma will follow.
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FIGURE 7: The k subgraphs Hy, Hy, ... , H3j-2



For each of Hy, Hy, H7,..., Ha;—5, we consider five cases. Before we
proceed we observe that in each of the following cases we never select vertex
v;1 of H; for the set B. This will insure that B is an independent set.

Case 1: Suppose that V(H;)NL, = 0. Then we put v; into B, so that
L,and B remain disjoint and v; is not adjacent to any vertex of L.

Case 2: Suppose that v;_; € L,. If s; exists, then by properties i) and ii) of
C, the path P,, , must terminate at vertex s;. In this case, we put s; into the set B.
Since the only neighbor of s; is v;, it follows s; is not adjacent to any vertex of
L,, and L and B remain disjoint. If s; does not exist but s,,, does, then by
properties i) and ii) of C, the path P,_, must terminate at vertex s;.1. In this case,
we put s;1; into B and clearly B and L, have the desired properties. Finally, if
neither s; nor s,,, exist, then by property i) of C, the path P,,_, contains vertices
v; and v;41. We can put v;41 into B, since v;.2 cannot be a left endpoint of a path
inC.

Case 3: Suppose that either v; € L,or vi41 € L,. By the minimality of C, if
v; € L, then s_, exists. Moreover, by properties i) and ii) we have v;_; ¢ L,
and s;_; ¢ L,. We put s_, into B, and in this case it is clear that B and L, are as
desired. The case v;y; € L, is similar.

Case 4: Suppose that either s,y € L, or s; € L,. By property ii) of C, if
8i-1 € L, then P, _, passes through s;_;1, v;_1, v;, and either v;y; or s; (if it
exists). If P, ,terminates at s; then we put s; into B, otherwise we put v; into B.
If s; € L, then the argument is similar, except that of course we will put either
8441 OF vy into B.

Case 5: Suppose that s;,; € L,. Then by our path labeling convention and
property ii) of C, P,,, does not pass through either vertex v;_; nor v;. Moreover,
by property i) of C, neither vertex v;..; nor v; is a left endpoint of a path in C.
Thus in this case, we can put v; into B,

Finally, we consider Hjo. If either of the vertices szx—3 or vag—g is a left
endpoint, then we can find a vertex in Hsy-o for the set B, by duplicating
arguments from Cases 2 or 4. So let us assume that neither sa;—3 Or vag—3 is in
L,. If s3;_3 exists, then we can put it into B. If s3;_3 does not exist, then since
vak—3 i8 not a left endpoint, vzx—y is not a left endpoint either by the minimality
of C. The path P,of C passing through the vertices vgx—3 and vsz_» must
terminate at either va;.1 Or 8359 (if it exists). In either case, the terminus of P,
can be put into B. O

Proof of Lemma 2. We consider two main cases for k.

Case I: Assume k is odd. ,

Case 1.1: Assume R € R}. Let R’ be the graph formed by deleting the
vertices vgy, and szi..; (if it exists) from R. See Figure 8. Then R’ € Ry. Since k
isodd, r(R') = (3k—1)/2,r(R) = (3k+ 1)/2, and it is easily verified that
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FIGURE 8: If R € Rj, R’ in the case s3;—1 exists

Case I.1.i: Suppose s3;—1 exists. Let /g be a maximum independent subset
of the vertices of R’, and let Cp/ be a minimum path covering of R’. If
vag-1 & Ipr, then Ip: U {8351} is an independent subset of the vertices of R of
size a(R')+1. If vgp—y € I, then (I — {vae-1}) U {vak, $3k-1} is an
independent subset of the vertices of R of size a(R’) + 1. Let L be the path in
Cr that contains vsgz_j. Since vsg—1 is an endpoint of R’', then vg;.q is an
endpoint of L. Let L’ be the path in R formed by joining the vertex vs; to L, and
let L” = s3k—1. Then (Crr — {L}) U{L’,L"} is a path covering of R of size
p(R’) + 1. Therefore by Lemma 1 and (3),

a(R) = aR)+1
> (3k2f l)r(R’)+p(R')+1
> (5 )@+ o),

Case ILl.ii: Suppose sg;-; does not exist. Let Ip: be a maximum
independent subset of the vertices of R’, and let Cgr be a minimum path
covering of R’. Thus Iy is an independent subset of vertices of R as well. Let L,
be the path in Cp: that contains vs;—;. Since vgx—; is an endpoint of R’, then
vak~1 is an endpoint of L. Let L’ be the path in R formed by joining the vertex
vag to L. Then (Cpr — {L})U{L'} is a path covering of R of size p(R').
Hence, by Lemma 1 and (3) as before,

a(R) > aR)+1
> (i )@+ o®)
> (32 )@+ o)




Case 1.2: Next, assume R € R;*. Of course, s3;—1 and s3; may or may not
exist, but in the following argument, we will assume both these vertices exist.
See Figure 9. The argument can be trivially modified if this is not the situation.
Let R" be the graph formed by deleting the vertices vsk, Vsks1» S3k-1, and sk
from R; see Figure 9. Then once more R’ € Ry, and since k is odd,
r(R') = (8k — 1)/2, 7(R) = (3k + 1)/2, and it is easily verified that

(%—JT(R') - ( 3k2:€- 1>r(R). @

/
VKL V3E Vikel
FIGURE 9: If R € R}*, R’ in the case both s3;_1 and s3;, exist

Let Jg: be a maximum independent subset of the vertices of R’, and let Cg:
be a minimum path covering of R’. Then I/ U {vsx+1} is an independent subset
of the vertices of R of size a(R’) + 1. Let L be the path in Cp/ that contains
V3k—1. Since va_1 is an endpoint of R, then v3,—; is an endpoint of L. Let L' be
the path in R formed by joining the vertex ssx—1 to L, and let L” be the path in
R joining the vertices ss, vsk, and vseq1. Then (Crr — {L})U{L’,L"} is a
path covering of R of size p(R’) + 1. Therefore, again by Lemma 1 and (4),

a(R) > a(R)+1
> ( 2k )r<R')+p(R'>+1

3k —1
( 2k )r(R) +o(R).

I\

3k +1

Case 1I: Now we consider the case where k is even.
Case IL1: If we assume R € R}, we can follow an argument similar to the
odd Case I.1 to show

2
a(R) 2 27(R) + p(R).
Case I1.2: Likewise, if we assume R € R}* and either s3; exists, or neither

S3k~1 NOT 83) exist, it is straightforward to conclude the proof. So let us assume
the remaining possibility:




V3k-3 Vik-/l Vik-1 Vi V3k+i
FIGURE 10: If R € R}*, R’ in the case both s3_; and s3; exist

Case I1.3: R € Rj* and s3;—) exists, but s3; does not exist. Let R” be the
graph formed by deleting the vertices vax—1, Usks Vsk+1, S3k—1, and sge—p (if it
exists) from R. See Figure 10. Then R” € Rf*,. It is easy to see that
p(R) < p(R")+1, a(R)>a(R")+2, and r(R)=r(R")+2. But by
Lemma 1 applied to R” we have

a(R) > a(R")+2
> (L) +or) +2
- (32::22)(3’“2 2)+1+p(R")+1
(725) (B52) + a1
> (5 )R+ o),

and we are finished. [J
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