
�

�

�

�

SOME HISTORY OF THE DEVELOPMENT OF GRAFFITI

ERMELINDA DELAVINA

Abstract. This paper provides some history of the development of the conjecture-
making computer program, Graffiti. In the process, its old and new heuristics
are discussed and demonstrated.

1. Introduction and Motivation

Graffiti is a conjecture-making computer program written in the mid-1980s by
Siemion Fajtlowicz. Since its inception, Graffiti’s conjectures have inspired about
eighty papers, some by researchers such as Alon, Bollob�as, Chung, Erdös, Kleitman,
Lov�asz, Pach, Seymour, Shearer and Spencer, and parts of ve Ph.D. theses (see
[10]). For Fajtlowicz, the main interest in the automation of some of the conjecture-
making processes was to understand what makes a good conjecture. This idea is
a recurrent theme in the series of papers [24, 25, 26, 27, 28, 29, 30], in which
heuristics (methods for deciding which relations are interesting) are described and
some conjectures are announced.

A motivation for the paper at this time is that interest in technical details not
mentioned in Fajtlowicz's papers has increased as the use of computers in mathe-
matical discovery expands. In particular, as computerized mathematical discovery
develops into a discipline, papers on the processes of mathematical discovery pro-
grams provide useful resources to researchers with similar interests; see [50] for
some history on mathematical discovery programs. Since announced open conjec-
tures seem relevant to a program being identi ed as a conjecture-making program,
we include discussion of the two main conjecture-making versions of Graffiti re-
ferred to in this paper as the 1980s version and the 1990s version (see Figure 1 for
an overview). Most of Graffiti’s announced conjectures are listed in the document
Written on the Wall [31] or in various papers such as [11], [12], and [32]. Conjec-
tures numbered 1 through 746 in [31] were made by the 1980s version. All but a
couple of the others were generated by the 1990s version, which include those listed
in Conjectures of Minuteman [32] (conjectures about fullerenes) and Pony Express
[33] (conjectures about benzenoids).

As a student of Fajtlowicz in the early 1990s, the author's main contributions
were to the development of the Dalmatian version of Graffiti, rst described in [30].
The resources utilized to provide a description of the 1980s version of Graffiti and
some history of its development were mainly Fajtlowicz's papers [25, 26, 27, 28, 29],
the program code, experimentation, and discussions with Fajtlowicz. The 1980s ver-
sion of the program is described rst; demonstrations of heuristics and discussion of
ancillary features are included. Next, the development of two intermediate versions
are described as they lead to the design of the Dalmatian version; in this paper, all

Date: January 2003. Revised: April 2004.
Key words and phrases. Gra�ti, Gra�ti.pc, Graph Theory, Mathematical Discovery.

1

https://Gra�ti.pc

2 ERMELINDA DELAVINA

Figure 1. Overview of Graffiti.

of these are collectively referred to as the 1990s version of the program. We then
describe the Dalmatian heuristic of Graffiti, and provide a demonstration of the
Dalmatian heuristic implemented by Graffiti.pc.

2. The 1980s version

In the early 1980s, Fajtlowicz proposed to a graduate student the task of writing
a computer program that would make mathematical conjectures. The student was
Shui-Tain Chen, and the program was called Little Paul. Although, Chen did not
collaborate with Fajtlowicz on the development of the (distinct) program that a
couple of years later would be known as Graffiti, in 1990 she completed her Ph.D.
thesis titled On Selected Conjectures of Graffiti [5].

In Fajtlowicz's On Conjectures of Graffiti [25], submitted in mid-1986, which
appeared in 1988 in Discrete Mathematics he described Graffiti as follows:

The basic idea of Gra�ti is that it \knows" certain graphs and it is ca-
pable of evaluating certain formulas from graph-theoretical invariants.
If none of the graphs with which Gra�ti is familiar is a counterexam-
ple to a formula then the formula is considered to be a conjecture. At
present Gra�ti is capable of computing about 60 invariants and it per-
forms several functions but I shall describe here only those which are
relevant to conjectures described in the next section. The conjectures
are of the form I � J , I � J + K and I + J � K + L, where literals run
over 20 distinct selected invariants plus a constant invariant 1. ... more
than half of the program consists of various heuristics whose purpose is
deletion of trivial and otherwise noninteresting but true conjectures.

This general description captured the state of development of the program until
the early 1990s. Before providing further details of the general scheme of the
1980s version and a summary of its heuristics, we discuss the computer hardware
resources available over time and provide a short description of the structure of
Graffiti’s code.

https://Graffiti.pc

3 SOME HISTORY OF THE DEVELOPMENT OF GRAFFITI

Figure 2. Graffiti’s general structure in the 1980s.

2.1. On the Code of Graffiti. Graffiti is a Pascal, module-based, menu-driven
program, whose creation was realized on a University of Houston multi-user DEC-
station (whose CPU speed was by today's standards very slow); the disk space avail-
able to a user of the computer was probably around 10 KB. In 1990, the program
was moved to a faster (but of course still slow by today's standards) VMS/VAX
station1 , named Charly, with 8 MB of RAM. Still, at the time the major advantage
was that the machine was dedicated to executing Graffiti. The program remained
on Charly, until 1995, at which time the code was ported from VMS to Unix (a Uni-
versity of Houston mathematics department multi-user machine). The development
of the program over the years was, in part, driven by the resources available.

The conjecture-making code of Graffiti is composed of almost two-dozen mod-
ules. Each module comprises procedures implementing a given functionality; for
example, one module was dedicated to procedures for input, output and updat-
ing of the database (of models and invariants), others for procedures implementing
heuristics and yet others for manipulating particular user-de�ned types.

For a short time after Graffiti’s creation, all procedures for composing graphs,
computing invariants and generating conjectures were part of one program. Soon
afterwards, due to memory limitations, the code could no longer be compiled in one
section and was split into two separate programs. The conjecture-generating code
remained in the collection of modules called Graffiti ; and the graph generating and
invariant computing code is contained in a collection of modules called Algernon,
which is discussed in the next section. In his series of papers on Graffiti, Fajtlowicz
describes the system of two programs as Graffiti, with one exception, namely in

1This was part of the Advanced Research Project grant, 0033652085-ARP.

�

4 ERMELINDA DELAVINA

[28] where Algernon is called a sub-program of Graffiti. At other times, he and
the author refer to the conjecture-making code as Graffiti. In this paper, from this
point on, the term Graffiti-System2 will be used to refer to both programs.

2.2. On the Code of Algernon. As seen in Figure 2, the input for Graffiti, called
a database, can be visualized as a 2-dimensional array, indexed by models and in-
variants. The task of constructing a database is performed by the sub-program
Algernon. Similar to Graffiti’s code, Algernon’s code is module-based, and each
module comprises procedures implementing a given functionality. Two modules,
called library and data of Algernon, are noted as there are multiple interchange-
able versions of each, and will be referenced again in Section 4.1. Most versions of
the library module are composed of a (usually) long list of short segments of code
(usually one segment corresponds to a graph) with boolean switches for determin-
ing inclusion of the graph into the database. Since the library module is readily
interchangeable, many such modules were developed over the years. A similarly for-
matted module, called data, determines which invariants are used in constructing
the database.

In the 1980s, most graphs generated by Algernon were built using Pascal func-
tions.3 For example, a star on n vertices can be generated as the join4 of an empty
graph on 1 vertex and an empty graph on n − 1 vertices. Algernon contains many
standard graph operations, as well as some non-standard graph operations. We
note that the current version of Algernon provides for other methods of includ-
ing graphs in the database, such as reading adjacency sequences for graphs [35],
reading adjacency lists for graphs from Gunnar Brinkmann's CaGe program [4],
Brendan McKay's makeg program [53], and Steven Skiena's database [55] of some
counterexamples to conjectures of Graffiti. All functions and procedures for evalu-
ating invariants are contained in Algernon, with one exception; for the duration of
the 1980s, the Fortran library EISPACK (for computing eigenvalues and eigenvec-
tors) was linked to Algernon with the assistance of Edward Dean of the University
of Houston. We note, that the current version (since the late nineties) no longer
utilizes EISPACK, instead the program utilizes eigenvalue procedures coded by
Fajtlowicz.

2.3. On 1980s Conjecture-Making Scheme and Heuristics. For the 1980s
version of the program, as Fajtlowicz described in [25] and [26], a list of certain
types of formulas (most of which the user does not see) is generated, immediately
after which heuristic(s) are applied. In this version, the purpose of a heuristic is
deletion of trivial and otherwise noninteresting formulas, the correctness of which
has been veri ed with respect to the database of graphs and invariants. Further,
he described that the types of formulas generated by this version are of the form
I � J , I � J + K and I + J � K + L, where literals run over invariants available
in the database and a constant of one. Before proceeding with this discussion, we
provide a graph theoretical de�nition.

2In the past, this informal naming convention seems to have contributed to confusion regarding
which stage of the process handles the computation of invariants (see Figure 2).

3In Section 5.1 we note another method.
4The join of two graphs G and H is the graph obtained from the union of G and H by adding

edges {u, v} where u is a vertex of G and v is a vertex of H.

�

5 SOME HISTORY OF THE DEVELOPMENT OF GRAFFITI

Figure 3. Graffiti’s help screen

Definition 2.1. The girth of a graph with a cycle is the length of its shortest cycle.
A graph with no cycle has in�nite girth (in the case of Graffiti it is taken to be
unde�ned). A graph is called triangle-free if its girth is not equal to three.

In Graffiti (and throughout this paper), the terms property and background are
used to indicate classes of graphs satisfying speci�c relations between invariants.
For example, suppose that one were interested in setting the program to generate
conjectures about \triangle-free" graphs; in Graffiti, the property would be the
collection of graphs (in the database) satisfying the relation that the girth of the
graph is not equal to three; and the background, if one wished to use \simple
graphs", would be the collection of all graphs (in the database), which satisfy any
identity. These collections of graphs are used to generate conditional conjectures
of the form \if G is in the property, then some relation (on invariants) holds". A
discussion of what role a background may have in such a conjecture is presented for
the third heuristic described below.

Figure 2 captures the general conjecture-making process of the 1980s version,
which we summarize as follows. Given as input a database of graphs and their
computed invariants, a user-selected (conjecture-generating) command, a property
and (possibly) a background, Graffiti generates a list of certain types of formulas,
immediately applies the heuristic(s), and lastly reports conjectures to a le or to
the screen.

In the rst three of Fajtlowicz's series of papers, On Conjectures of Graffiti
[25, 26, 27], four heuristics of this version of Graffiti are discussed. We provide a
summary of the four heuristics, irin, cncl, echo and beagle, described in print, and
of those heuristics visible in the help menu of Graffiti (Figure 3). The program's
code suggests that updating the help menu ceased early on. We note that there are
many conjecture-making commands (in the code and thus available to the program),
which are combinations and variations of the other heuristics.

� The command ineq as described in the help menu (Figure 3), reports all
relations between invariants available in the database (of the form I � J)
satis�ed by the models in the database. This command is frequently employed
by other heuristics.

�

6 ERMELINDA DELAVINA

Figure 4. Genealogy tree.

� In the paper On Conjectures of Graffiti [25], Fajtlowicz described irin, which
deletes those conjectures which by transitivity follow from others; and cncl,
which deletes those conjectures of the form I � J + K and I + J � K + L in
which one of the invariants on the left is always smaller than an invariant on
the right. In practice, irin calls ineq and rejects those inequalities that follow
by transitivity.

� In the paper On Conjectures of Graffiti II [26], he described the heuristic
echo, which implements the idea that a conjecture about a class of objects A
(a property) is considered noninteresting if it can be generalized to a larger
class B (a background). In practice, the user is prompted for a property
and background. A relation is accepted (as a conjecture) if it is correct with
respect to the models in the property but not for the models of the background.
For example, an inequality between invariants is deemed noninteresting for
triangle-free graphs if it is also true for all simple graphs.

� In the paper On Conjectures of Graffiti III [27], a discussion of the heuristic
beagle was given. It implements the idea that conjectures involving concepts
of a di�erent type are more likely to be interesting. While this heuristic is not
explicitly listed in the help menu, it is launched by other heuristics as shall
be demonstrated in Section 3. In the 1980s, the convention implemented for
invariant names served some of the heuristics used by Graffiti (for example,
those that launch beagle). In [27], Fajtlowicz described the representation of
an invariant name by a rooted tree, which tracks the \genealogy" of the invari-
ant (see Figure 4). Further, he described experimenting with several distance
functions, and thus we note that the one described next may or may not have
been the one he decided on (if there was one); in any case, we describe one
that was found in the code of Graffiti. Using a genealogy tree representation,
the distance between two invariants is their graph distance in the genealogy
tree, if they share a common root; otherwise, the distance is de�ned to be
the sum of the depths in their corresponding genealogy trees. For example,
the invariants \minimum degree of the graph" and \maximum degree of the
graph" are at distance 2 (see Figure 4), the invariants \maximum degree of the
graph" and \maximum of local independence of the graph" are at distance 4,
whereas \maximum degree of the graph" and \girth of the complement graph"
are at distance 5.

� The rst heuristic on the help menu (Figure 3), but not discussed in [25], [26]
or [27] is eiff. The heuristic eiff implements the idea that the fewer models in
the background for which the relation holds, the more likely the relation is to
be of interest for the models in the property. In practice, once this command
is selected, the user is prompted to de�ne a property and a background, a

�

7 SOME HISTORY OF THE DEVELOPMENT OF GRAFFITI

relation and a probability. For eiff, the probability associated with a relation
is the ratio of the number of models in the background for which the relation
holds to the number of models in the background. For each relation (candidate
conjecture), if the probability associated with the relation is not more than
the probability entered by the user, the relation is accepted as a conjecture.

� The heuristic cheq, mentioned in the help menu (Figure 3), implements the
echo heuristic for the equality relation. In practice, once this command is
selected, the user is prompted de�ne a property and a background, and a
lower bound for the distance (as de�ned above) between invariants on the left
and right hand side of the relation.

� The heuristic erin as described in the help menu (Figure 3), implements the
echo heuristic for (the relation \�") and then applies the heuristic irin.

� The heuristic erie as described in the help menu (Figure 3), implements the
irin heuristic and then the heuristic echo.

� The heuristic equs as described in the help menu (Figure 3), reports all equal-
ities between invariants satis�ed by the models in the database.

3. Demonstrations of the 1980s version

While the 1980s version is still executable (and thus a demonstration was possi-
ble), we note that many of that version's heuristics are no longer used. The reader
will be alerted to one instance (in Section 3.6) in which that version of the pro-
gram does not currently work as it did in the past due to changes of direction in
the development of the program. Further, we note that the code of the heuristics
was not altered for the demonstrations in this paper; in one case code was intro-
duced as noted in Section 3.9, and in some cases, diagnostics were included (but
removed before capturing screen images) to insure the author's understanding of
some details.

Once a database is available for input and execution of Graffiti is initiated, the
rst prompt is for a command. (See Figure 2 for the structure of the program.)

If the user types \help", the screen in Figure 3 appears. As previously described,
some of the command options, such as echo, irin, cheq, erin, irie, and rest, listed
in the help screen of Figure 3 are heuristics (and combinations of them) of the
1980s version as described in [25] through [27]. Other command options that are
visible on this menu, but not discussed in Fajtlowicz's papers, are for viewing and
modifying the database, and for viewing conjectures (modifying them is not an
option). These ancillary commands include ftch, lisc, lisg, and modi.

The following subsections include a discussion of the form of databases of graphs
and invariants used for the demonstrations, a discussion on the form of Graffiti’s
output and Fajtlowicz's method for announcement of conjectures. The demonstra-
tions include the ancillary commands called ftch and modi ; and the conjecture-
generating commands irin, ircn, dirn and erie. The conjecture-generating com-
mands that are demonstrated launch the heuristics, irin, cncl, echo, beagle and
combinations of them. As far as the author is aware, the demonstrations in this
paper are not duplications of previous executions of the program. However, we
note that conjectures previously made by Graffiti and announced in [31] do appear
in demonstrations, since some similar invariants are used in the demonstrations;
the reader will be alerted to such conjectures, and to other conjectures as they

�

�

�

�

�

8 ERMELINDA DELAVINA

demonstrate the heuristic or as they seem of interest.

3.1. Database for 1980s Version Demonstration. For the 1980s version, the
database of graphs and their computed invariants was limited (due to computer
memory issues) to about 200 graphs and 200 invariants. These numbers were
increased and decreased at di erent times; however, due to the other large data
types of this version (for example those used to hold candidate conjectures) they
were usually limited to about 200. For the initial demonstration in this paper, the
database was composed of 19 invariants and 164 simple connected graphs. On the
subject of databases used to generate conjectures, Fajtlowicz reports that he rarely
used more than 80 graphs in any one session of this version of Graffiti. While
experience has shown that it is not essential to use a large number of graphs in
order for the program to generate conjectures that are correct and interesting to
researchers (see [31]), the rst 80 graphs (of the 164 used for the database in this
demonstration) were selected since they were readily available, and the remaining
80 graphs were taken from Skiena's database (of some collected counterexamples to
some of Graffiti’s conjectures). Invariants chosen for the demonstration included
at least four computationally challenging invariants (independence number, local
independence number, path covering number, and bipartite number) and many
invariants on degrees and distances of graphs; de�nitions are provided in Section
3.4.5

We note that courtesy of the mathematics department at the University of Hous-
ton - Central Campus, the following demonstrations of the 1980s version of Graffiti
were performed on one of its Unix machines. This was not the case for the demon-
stration of Algernon. The databases of graphs and their computed invariants (for
the demonstrations) were generated by the similar program Graffiti.pc (see [13] and
Section 5.2) and formatted for input to Graffiti. Other details, as they relate to
some heuristics, on the form of the database are provided in later sections. But
rst, we briefy discuss the program's output and the convention used by Fajtlowicz

to announce conjectures.

3.2. Graffiti’s Output and Announcing Conjectures. The rst public an-
nouncement of conjectures was in 1986 at the Southeastern Combinatorics and
Graph Theory Conference. Eventually the 18 conjectures, announced at the con-
ference and subsequently announced in his paper On Conjectures of Graffiti [25],
became conjectures 1 through 18 in the document now known as Written on the
Wall [31]. As will be seen in the following sections, Graffiti’s output, the list of
conjectures (see Figure 8 for a sample), is generally directed to a le. A selection
process for which conjectures of the 1980s version were added to [31] was rst de-
scribed in [25]. The process that Fajtlowicz described in [25] is that some of the
conjectures were evaluated, counterexample(s) to some conjectures were reported
to the program, the program was re-executed and again some of the conjectures
were evaluated. It follows from the description in [25] that after a few rounds of
this process, he announced some of the conjectures made by Graffiti. This iteration
process will be demonstrated in Sections 3.7 and 3.8.

Regarding his selection of which of the conjectures of the 1980s version of Graffiti
to announce, in the paper On Conjectures of Graffiti II [26], Fajtlowicz explained

5These 19 invariants are a subset of the invariants that will be used in later demonstrations
(beginning with the second demonstration of Section 3.7).

https://Graffiti.pc

�

9 SOME HISTORY OF THE DEVELOPMENT OF GRAFFITI

Figure 5. Graffiti’s select property menu.

that \The two main reasons why I do not announce more conjectures of Gra�ti is
that I can't estimate their value and I do not want to communicate too many true
but trivial conjectures"; and later in On Conjectures of Graffiti III [27] and in On
Conjectures of Graffiti V [30], he re-iterated this while discussing the 1980s version
of Graffiti.

3.3. Demonstration of ftch. The ancillary command, ftch, is used to view the
database of models and their computed invariants. The menu in Figure 5 appears
once ftch is invoked. At this point, a user can select to view a subset of the input.
Each choice available in the menu (in Figure 5), is designed to facilitate selection
of models with user-speci�ed properties (de�ned by relations between invariants).
In practice, each of the options6 1-9 and 13-14 use the following convention: i1 and
i2 denote model invariants by their numerical identi�ers and c denotes a constant.

For our demonstration, suppose that a user seeks to view information about
\triangle-free graphs" of the database. Before using ftch, one types the command
listc to list all invariants present in the database along with their corresponding
numerical identi�ers, and (one) notes the value corresponding to girth, (17 in the
example database). Next, one enters the command ftch, selects option 5 (see menu
in Figure 5) with 17 as the value for i1, the number 3 as the constant (for our
example), and then enters 0 in order to select the complement of the set of graphs
for which the girth is equal to three. The selected graphs are those with girth not
equal to three (i.e. triangle-free graphs). After the selection of one or more relations
used to de�ne a property, the ftch menu appears (Figure 6). Option 1 allows for
viewing the values of all invariants of a particular graph (model); option 2 allows
for viewing the values of an invariant for all of the graphs (models) selected by a
user in the previous step. The menu shown in Figure 6 lists these options and a
variety of others for inspecting the database.

3.4. A Demonstration of irin. The rst demonstration of a conjecture-making
heuristic is a demonstration of irin with the property selected as \simple connected

6Although, 13 and 14 were clearly added later, they are included here since they are obviously
options similar to the �rst 9. The two choices 11 and 12 for selecting a property were added after
1990, and thus will be discussed in Section 4.4.

�

�

10 ERMELINDA DELAVINA

Figure 6. Graffiti’s ftch menu.

graphs" (as seen in Figure 7). As Fajtlowicz described in his papers on Graffiti
prior to Graffiti V, the 1980s version of the program generates a collection of for-
mulae (candidate conjectures which the user does not see), immediately after which
heuristic(s) are applied by the program. As seen in Figure 7, the program gener-
ated 52 relations (correct with respect to the database), but only 23 were accepted
as conjectures. Once prompted, the output was directed to the le conj.dat whose
contents are seen in Figure 8. An example of a trivial candidate conjecture removed
by irin may be the statement that minimum degree of the graph is not more than
its maximum degree.

Before discussing the conjectures, we digress to note that the query about storing
in the master le (in the lower part of the second screen shot of Figure 7) is a feature
that was added in the 1990s, and thus, that feature is discussed in Section 4 of this
paper. The rst two options for storing or printing the conjectures are obvious.
The third option, \prepare for auto", is briefy mentioned in [25] and [28], and
discussed in Section 5.1.

By the author's count, of the 23 conjectures accepted by irin (see Figure 8 for the
full list) only six were interesting. Before discussing the status of the six conjectures
mentioned, we provide many relevant graph theoretical de�nitions.

Definition 3.1. Let G be a simple connected graph. The distance from vertex u
to vertex v of G is the length of a shortest u, v-path. The average distance of G is
the average of all distances between distinct pairs of vertices.

The eccentricity of a vertex v of a graph is the maximum over all distances from
v to the other vertices of the graph. The average eccentricity of a graph is the
average of all eccentricities of vertices of the graph. The radius of the graph is the
minimum eccentricity and the diameter of the graph is the maximum eccentricity.

Definition 3.2. Let G be a simple connected graph. A vertex of G is called a
boundary vertex if its eccentricity is maximum over all vertices. The average dis-
tance from boundary vertices of a graph is the average of all distances between
boundary vertices and all other (distinct) vertices. A vertex of a graph is called a
center vertex if its eccentricity is minimum over all vertices. The average distance

11 SOME HISTORY OF THE DEVELOPMENT OF GRAFFITI

Figure 7. Demonstration of irin.

from center vertices of a graph is the average of all distances between center vertices
and all other (distinct) vertices.

Definition 3.3. A subset of vertices of a graph is called independent if no two
vertices in the subset are adjacent. The cardinality of a largest independent set is
called the independence number of a graph.

The number of vertices of a largest induced bipartite subgraph of a graph is
called the bipartite number of a graph. The number of vertices of a largest induced
path of a graph is called the path number of a graph.

The minimum number of vertex-disjoint paths needed to cover the vertices of a
graph is called the path covering number of a graph.

Among the six conjectures discussed next, one (as far as the author is aware) is
open, two are known to have been previously made by Graffiti, and three are easily
proven and found in mathematics papers or texts.

Conjecture 1. If G is a simple connected graph, then the average distance from
boundary vertices of G is not more than independence number of G.

Conjecture 1 is open (as far as the author is aware).

Conjecture 2. [31, Conjecture labeled Gra�ti 0] If G is a simple connected graph,
then the radius of G is not more than independence number of G.

Conjecture 2 was proven in [40], [24], and later in [34]. At about the same time
a slightly stronger result appeared in [23].

Conjecture 3. [31, Conjecture labeled Gra�ti 2] If G is a simple connected graph,
then the average distance of G is not more than the independence number of G.

�

12 ERMELINDA DELAVINA

Figure 8. Conjectures of irin demonstration.

Conjecture 3 was proven in [7] (note that rst a slightly weaker relation was
proven in [24].) We note that the fact that irin reported both Conjecture 3 and
the relation in Conjecture 1 means that the average distance from the boundary
vertices and the average distance of the graph are not comparable for all simple
connected graphs.

Conjecture 4. If G is a simple connected graph, then the diameter of G is not
more than the bipartite number of G.

The relation in Conjecture 4 is easily proven; it is the case that the stronger
relation diameter of graph +1 is not more than the path number of graph is true
(and easily proven) and mentioned in [23]. In view of this, it is reasonable to wonder
why the irin heuristic made the bipartite number conjecture since indeed it follows
by transitivity; however, as noted previously, this demonstration utilized a database
with only 19 invariants and the path number was not among them. In Section 3.7
the database for the demonstrations is extended (and includes the path number).

Conjecture 5. If G is a simple connected graph, then the independence number of
G is not more than the bipartite number of G.

Conjecture 5 is easily proven.

Conjecture 6. If G is a simple connected graph, then the path covering number
of G is not more than the independence number of G.

This is easily proven, and noted in [52].
We note that according to Fajtlowicz the above demonstration is not typical in

the sense that there can be many more conjectures accepted in one session of an
execution of this version.

3.5. Demonstration of cncl followed by irin. For the next demonstration,
we generate sums of the 19 invariants, and then utilize the ircn command, which
launches the cncl heuristic followed by irin. Sums of all (distinct) invariants were
generated and added to the database using the modi command (Figure 9), by
choosing option 10 (to add all sums of invariants) followed by option 3 (to store

13 SOME HISTORY OF THE DEVELOPMENT OF GRAFFITI

Figure 9. Graffiti’s modi menu.

Figure 10. Demonstration of ircn.

the database). Next, the ircn command was given, with \simple connected graphs"
selected as the property. The numeric values, 4214, 152 and 115 seen in Figure 10
are the number of relations between invariants and sums of invariants (correct with
respect to the database), the number of those relations accepted by cncl, and the
net number of relations accepted by irin, respectively.

For this demonstration, we implemented a process for selecting conjectures simi-
lar to the one described in Section 3.2. First, the author categorized the conjectures
as known, trivially uninteresting, and left 92 pending. Those were sent to Fajtlow-
icz with the request that he select some (in the spirit of what he was doing in the
1980s) that he would have considered including in Written on the Wall. Within
thirty minutes, he responded by marking 5 with some comments; the author added

�

14 ERMELINDA DELAVINA

two more and sent 13 of them to an electronic mailing list7 for Fajtlowicz's gradu-
ate students and a couple of colleagues. Note that many of the relevant de�nitions
were given in De�nitions 3.1, 3.2 and 3.3.

Among the thirteen conjectures sent to the mailing list were the 6 conjectures
(with similar comments) already mentioned in Section 3.4, and the following seven
conjectures.

Conjecture 7. If G is a simple connected graph, then the diameter of G is not
more than the independence number of G plus the radius of G.

The conjecture listed above was sent with Fajtlowicz's comment, \This true
because the diameter is not more than twice the radius, but the case of equality is
of interest."

Conjecture 8. If G is a simple connected graph, then the diameter of G is not
more than the average eccentricity plus the radius of G.

Conjecture 8 was resolved shortly after the list was sent to the group. Bill
Waller pointed out that this is also true, and the argument is similar to that given
for Conjecture 7.

Conjecture 9. If G is a simple connected graph, then the average eccentricity of
G is not more than the independence number of G plus the average distance of G.

Conjecture 10. If G is a simple connected graph, then the average distance of G
is not more than the radius of G plus the minimum degree of G.

Shortly after the list was sent to the group, Bill Waller found a counterexample
to Conjecture 10.

Conjecture 11. If G is a simple connected graph, then the average distance of G
is not more than the path covering number of G plus the radius of G.

Conjecture 12. If G is a simple connected graph, then the minimum degree of G
is not more than the number of boundary vertices of G plus the number of center
vertices of G.

A couple of days after it was announced, Bill Waller and the author found a
counterexample to Conjecture 12.

Definition 3.4. Let S be a subset of the vertices of a graph G. Then the neigh-
borhood of S, denoted N(S), is the subset of vertices of G that are adjacent to at
least one vertex of S.

Conjecture 13. Let G be a simple connected graph. Let M be the subset of vertices
of G that have maximum degree, and let A be the subset of vertices of G that have
minimum degree. Then the cardinality of N(A) is not more than the bipartite
number of G plus the cardinality of N(M).

3.6. Demonstration of Beagle. One of the commands that implement the beagle
heuristic is called dirn. The command dirn proceeds similarly to the irin command
except that the user is prompted for a distance (which is de�ned in Section 2.3).
As described in Section 2.3 the convention for naming invariants a ects the imple-
mentation of beagle, which utilizes the idea that conjectures involving concepts of a

7The subject title was A Blast from the Past.

15 SOME HISTORY OF THE DEVELOPMENT OF GRAFFITI

Figure 11. Demonstration of the dirn command, which imple-
ments the beagle heuristic.

di�erent type are more likely to be interesting. Since the beagle heuristic is no longer
used in the Graffiti-System, the convention for naming invariants has changed. That
is, Algernon no longer adheres to the convention, nor does Graffiti.pc the generator
of the database (as mentioned in Section 3.1). For the demonstration, the two
counterexamples were added to the database used in the previous demonstration
(without sums of invariants), and the names of the 19 invariants were changed8

using a text editor.
Once the input was available, Graffiti was executed, dirn was entered as the

command, and the collection of graphs for the property was selected as \simple
connected graphs". The author experimented with various values for the minimum
distance between invariants, with the following outcomes. With minimum distance
of 2, the beagle heuristic did not eliminate any of the 23 conjectures made by
irin; with minimum distance of 3, the beagle heuristic accepted only 19 of the 23
conjectures made by irin; with minimum distance of 4, the beagle heuristic accepted
18 of the 23 conjectures made by irin; with minimum distance of 5, the beagle
heuristic accepted only 10 of the 23 conjectures made by irin (Figure 11); with
minimum distance of 6, the beagle heuristic accepted only 3 of the 23 conjectures
made by irin; with minimum distance of 7, the beagle heuristic rejected all but one
of the 23 conjectures made by irin. Finally, with minimum distance of 8, all 23
were rejected.

During the experiment, the author wondered if among the 10 conjectures (seen in
Figure 12) accepted with minimum distance set to 5, one would �nd the six conjec-
tures discussed in Section 3.4. It was the case that four of the six conjectures were
reproduced by dirn with minimum distance set to 5. The two not present were di-
ameter of the graph � bipartite number of the graph, since according to the invariant
naming convention of the 1980s version, the invariants (maximum;eccentricty;graph
and order;bipartite subgraph;graph) are at distance 4; and the independence number
of the graph � bipartite number of the graph, since according to the old invari-
ant naming convention, the invariants (maximum;independent vertices;graph and
order;bipartite subgraph;graph) are also at distance 4.

8For example, the min degree of graph was changed to min; degree sequence; graph.

https://Graffiti.pc

16 ERMELINDA DELAVINA

Figure 12. Conjectures of the dirn command, which implements
the beagle heuristic.

3.7. First Demonstration of echo . The echo heuristic will be demonstrated in
the next 3 sections. The �rst demonstration utilizes the same database as before,
except that invariant names will follow the naming convention used in the 1990s.
In the next two demonstrations, we expand the database to include more invari-
ants, and illustrate two iterations of nding counterexamples and re-executing the
program before listing conjectures.

The heuristic echo can be launched by itself or in combination with other heuris-
tics. Our �rst demonstration will be of the command erie, which launches the irin
heuristic followed by the echo heuristic. For this demonstration, as described above
we utilize the same database as in the previous demonstration. The property of
\triangle-free graphs" was selected as before. The program reported that 63 re-
lations were correct (with respect to the database) for the graphs in the property
selected and proceeded to prompt the user to de�ne the background ; the back-
ground selected was the collection of \simple connected graphs". The number of
conjectures accepted was reported to be three, one of which is described below.

Definition 3.5. Let G be a simple graph. The local independence of a vertex of G
is the independence number of the subgraph induced by the neighbors of the vertex,
and maximum of local independence of G is the maximum of local independence
numbers over all vertices of the graph.

Conjecture 14. If G is a connected triangle-free graph, then the maximum degree
of G is not less than the maximum of local independence of G.

Equality of the two invariants (occurring in Conjecture 14) is trivially true for
triangle-free graphs. However, this illustrates the main idea of the heuristic echo,
since it is not true for all simple connected graphs. The other two reported relations
were both false (and resolved by the author).

3.8. Another Demonstration of echo . For the second demonstration of erie,
which implements echo, a counterexample to the previous two false conjectures was
added to the database, and the number of invariants increased to 128 (although,
Fajtlowicz reports using fewer than this amount). The set of invariants included

�

�

17 SOME HISTORY OF THE DEVELOPMENT OF GRAFFITI

Figure 13. Conjectures of erie with expanded database.

at least 8 that were computationally di�cult, the others were degree and distance
related. Note, the expanded database was used for the remainder of the demonstra-
tions in this paper. Before invoking any conjecture-making commands, the modi
command was utilized with option 19 selected, which deletes redundant equalities
(as described in the menu of Figure 9). Option 19 prompts the user for a prop-
erty. For this demonstration the property of \triangle-free graphs" was selected.
The program reported 12 equalities, one of which involved the invariants in the
previously discussed conjecture; most of the other equalities related some degree
invariants of the graph to degree invariants of its complement. After the modi op-
tion was implemented, the database was composed of only 117 of the 128 original
invariants.

Once the database was expanded, the erie command was launched, the property
was selected as \triangle-free graphs" and the background was selected as \simple
connected graphs". The program reported that 1670 inequalities were generated by
ineq for the selected property, and that 359 of those remained after irin was utilized.
Finally, after the heuristic echo was utilized the number of accepted conjectures was
132. In Figure 13, we see that as Fajtlowicz described in [26] the program produces
groups of conjectures. Since many of the conjectures on the rst part of this list
are false, the demonstration will include one iteration of the process (described in
Section 3.2) of providing counterexamples and re-executing the program.

After considering some of the rst 30 conjectures, the author found nine coun-
terexamples9 to refute at least 13 conjectures. All refuted conjectures related degree
invariants to distance invariants. Three of the counterexamples were small graphs
on 6 or 7 vertices, and the others were on between 13 to 30 vertices. After adding
the counterexamples to the database and re-executing, the program indicated that
1574 inequalities had been generated by ineq for the graphs of the property, and

9We note that after the demonstration was described, Fajtlowicz commented to the author
that he would have re-execute the program well before �nding 9 counterexamples.

18 ERMELINDA DELAVINA

Figure 14. Conjectures of erie after one iteration of counterex-
amples and re-execution of the program.

that after applying irin 342 remained. Once the heuristic echo was applied, the
number of accepted conjectures was 94. The decrease in the number of conjectures
is probably due to the observation that erie generates groups of similar conjectures.
(That is, some of the graphs added to the database were probably counterexamples
to similar types of conjectures).

After glancing at some of these 94 conjectures, the author was convinced that
many of them were false. Thus, in the next section we demonstrate another it-
eration of the process of nding counterexamples and re-executing the program;
and we also take this opportunity to discuss the idea of the touch number and to
demonstrate the use of a program to test for counterexamples. Introduction and
demonstration of the touch number at this juncture is intended to serve a two-fold
purpose. This idea will recur in the discussion of the Dalmatian heuristic, and in
the next demonstration this additional criterion (an undocumented feature of the
1980s version) might prove useful for eliminating some of the trivial conjectures
made in this demonstration.

3.9. Atypical-Demonstrations of the 1980s Version. We previously noted
that the demonstrations were not duplications of any of Fajtlowicz's previous runs
of this version of Graffiti ; the following demonstrations diverge even more from
\typical" runs of the 1980s. At this point, we will continue with the expanded
database and the counterexamples found; however, we �rst discuss the command
prox, which is not described in either the help menu or Fajtlowicz's papers of this
version, but was encountered as the author browsed the code and experimented
with some commands. Note that the prox heuristic was selected (by the author)
for discussion and demonstration because it involves the idea of the touch number,
which is de� ned below and discussed again in Section 5. The touch number of a
relation, α � β, is the number of models (in the database) for which the relation is

�

19 SOME HISTORY OF THE DEVELOPMENT OF GRAFFITI

equality. The code of Graffiti indicates that the prox command launches the com-
mand ineq for a user selected property, prompts for a \proxy value" (i.e. minimum
touch number) and proceeds to report which relations have a touch number of at
least the \proxy value".

For this demonstration (in an e�ort to continue with the line of thought in the
previous demonstration), the author added a new command called erpx, which is
a combination of erie and prox. The new command erpx performs exactly as erie,
but �rst prompts the user for a minimum touch number.

Once the command erpx was entered, the minimum touch was set to 9, the prop-
erty of \triangle-free graphs" was selected, and the background was selected to be
\simple connected graphs". As before, the program reported that 1574 inequalities
were made by ineq for the property, 342 remained after applying irin, and 94 re-
mained after the heuristic echo was applied; and �nally, 61 relations satis�ed the
condition of minimum touch at least nine. Note that using the ftch command, the
author had previously determined that the database contained about 90 triangle-
free graphs, and thus minimum touch of 9 was arbitrarily selected at around 10%
of the number of models in the property. On the �rst part of the list of conjectures
in conj.dat as seen in Figure 15, the rst two are easily shown to be correct for
triangle-free graphs; however, since many of the remaining were almost certainly
false, we again provide another iteration of the process of nding counterexamples,
but now, rather than follow the steps of a \typical" iteration process used in the
1980s, we will use a program to test for counterexamples10 .

The list of 61 conjectures, described by their numerical invariant identi�ers, was
input to Builddbs, a subprogram (described in [13]) of Graffiti.pc, for which code
was rearranged to test the 61 conjectures on about 22,500 small connected triangle-
free graphs; the number of vertices ranged between 1 and 16. The adjacency lists of
the graphs were retrieved from The Combinatorial Object Server's web interface for
Brendan McKay's makeg. We note that this is not the �rst time that conjectures
of this version of Graffiti were tested on many graphs. In the early 1990s, Tony
Brewster, Michael Dinneen and Vance Faber tested over 200 of Graffiti’s conjectures
on all of the nonisomorphic graphs with 10 or fewer vertices; their research is
summarized in [1] and [21].

Of the 61 conjectures tested by Builddbs, 42 were refuted by 25 examples of small
triangle-free graphs on fewer than 11 vertices. We will present 9 of the remaining
conjectures but �rst provide some relevant de�nitions common to many of the
statements and note that the remaining de�nitions were provided previously or will
precede the conjecture in which they appear.

Definition 3.6. Let G be a connected graph. Let D be the degree sequence of G.
The mode of D is the value of the sequence that occurs most frequently, and the
frequency of a modal degree is the number of times a mode occurs in D. We call
the minimode of D the value of the sequence that occurs least frequently, and the
frequency of a minimodal degree is the number of times a minimode occurs in D.

Of the remaining 19 conjectures, 2 were easily proven (related to maximum
degree and independence), 8 were trivially true, and �nally the remaining 9 are
listed next.

10Fajtlowicz did experiment with a program �nding counterexamples; we discuss this in Section
5.1.

https://Graffiti.pc

20 ERMELINDA DELAVINA

Figure 15. Conjectures of erpx.

Conjecture 15. [31, Conjecture labeled Gra�ti 112] If G is a connected triangle-
free graph, then the radius of G is not more than the frequency of a modal degree
of G.

Conjecture 15 was disproved for triangle-free graphs by Shui-Tain Chen in April
of 1988, and later she proved that the relation holds for trees.

Conjecture 16. If G is a connected triangle-free graph, then the frequency of a
minimodal degree of G is not more than the 2nd smallest value in the set of degrees
of the complement of G.

Definition 3.7. The closed neighborhood of a subset S of vertices of G, denoted
by N [S], is de�ned to be the union of N(S) (de�ned in De�nition 3.4) and S.

Conjecture 17. Let G be a connected triangle-free graph. Let M� be the subset of
vertices of G that have maximum degree in the complement of G. Then the 2nd
smallest value in the set of degrees of G is not more than the cardinality of N(M�).

Conjecture 18. Let G be a connected triangle-free graph. Let M� be the subset
of vertices of G that have maximum degree in the complement of G. Then the
maximum of even degrees of G is not more than the cardinality of N(M�).

Conjecture 19. Let G be a connected triangle-free graph. Let A be the subset of
vertices of G that have minimum degree in G and let M� be the subset of vertices
of G that have maximum degree in the complement of G. Then the cardinality of
N(A) is not more than the cardinality of N [M�].

Definition 3.8. Let G be a connected graph, and let S be a subset of the vertices
of G. The eccentricity of S is the maximum of eccentricities of the vertices of S.
(The eccentricity of a vertex was given in De�nition 3.1.)

Conjecture 20. If G is a connected triangle-free graph, then the eccentricity of
the set of boundary vertices of G is not more than the 2nd smallest value in the
sequence of degrees of the complement of G.

�

�
�

�

21 SOME HISTORY OF THE DEVELOPMENT OF GRAFFITI

Conjecture 21. If G is a connected triangle-free graph, then the average distance
between (distinct) center vertices of G is not more than the 2nd largest value in the
set of degrees of the complement of G.

Definition 3.9. Let G be a connected graph. The length of a longest induced
cycle is called the induced circumference of G. Note that in the case that G is a
tree, the induced circumference is considered by the program to be unde�ned (and
thus trees are not considered to be counterexamples).

Conjecture 22. Let G be a connected triangle-free graph. Let us denote the max-
imum degree of the complement of G by �� . If �� is at least two, then n mod �� is
not more than the induced circumference of G.

Definition 3.10. Let G be a connected graph. Let D be the degree sequence of G
listed in non-increasing order. Let � be the �rst term of the sequence. A derived
sequence is obtained from D by deleting the largest element � and subtracting one
from its � next largest elements; we will call this operation L. It is known that
a sequence is realized by a graph if and only if the derived sequence is realized by
a graph ([43] and [46]); thus, repeated iterations (including sorting of the derived
sequences) of the operation L results in a sequence of zeros. If D is the degree
sequence of G and operation L is applied until the derived sequence is the zero
sequence, then the number of resulting zeros is called the residue of G.

Conjecture 23. If G is a connected triangle-free graph, then the number of even
degrees in the set of degrees of the complement of G is not more than the residue
of G.

4. The Early 1990s

In the 1989-1990 academic year, Fajtlowicz recruited graduate students to join
this project as he had been awarded an Advanced Research Project grant.11 In the
almost three years of support, the team was composed at di erent times of a subset
of William Curry, Ermelinda DeLaVina, Siemion Fajtlowicz, Michael Granado,
Kathryn Johnson and Timor Sever. First, Fajtlowicz recruited Johnson (a computer
science student) to write the code for what would be called a master le, 12 which
was an e ort to organize and maintain a database of Graffiti’s conjectures. The
idea of the \master le" was that as the program made new conjectures one could
mark their status as known, open, proven, disproven and add comments. Although
the code written by Johnson ended up not being used (since the data structure
used for conjectures would undergo signi�cant changes), we note that she was the
�rst person to contribute any code to Graffiti aside from Fajtlowicz. Further, we
note that similar descriptors for conjectures were provided for in the later version;
option 14 of the term menu (Figure 17) provides the ability to switch the proven
status of conjectures.

In the next subsection, we describe the elementary geometry version of Alger-
non developed by the team of DeLaVina, Fajtlowicz, Granado and Sever. The
intermediate versions of Graffiti that followed the 1980s version but preceded the
Dalmatian version, which are discussed in Subsections 4.2 through 4.4 were devel-
oped by DeLaVina and Fajtlowicz (often in a joint e ort).

110033652085-ARP.
12This is related to the query in Figure 7.

https://grant.11

�

�

22 ERMELINDA DELAVINA

4.1. Elementary Geometry. In the middle of the spring of 1990, a main task of
the team of DeLaVina, Fajtlowicz and Sever, was to write code for the subprogram
Algernon. Speci cally, the goal was to create a library module and a data mod-
ule in Algernon, which would generate the 2-dimensional database of elementary
geometry models (polygons) and invariants for input to Graffiti (see Figure 2 for
the program structure). Although Granado joined the project later in the year, he
also contributed to the elementary geometry code of Algernon.

Up to that point Graffiti had generated mathematical conjectures mainly in
graph theory and some in number theory (for the latter, see conjectures numbered
434-470 and 495-536 in [31]). Since the conjecture-generating part of Graffiti only
\knows" the values of the invariants, (and therefore does not depend on the \type"
of model about which conjectures are made), Fajtlowicz's goal to test his contention,
that Graffiti is domain independent, seemed practical. By the summer of 1990,
some geometry input was available and the program (using the 1980s version) indeed
generated conjectures as expected. Eventually, the geometry conjectures were listed
in [31] as numbers 726 through 744a.

In addition to Algernon’s new code, there were other geometry related tasks
pursued. For example, the team focused for a while on triangulations of simple
curves and during this time Curry (with some collaboration with Granado) wrote
a Voronoi diagram viewing program. The pictures were impressive, but, unfortu-
nately the code for the viewer was not ported to other platforms. The development
of the elementary geometry databases continued through early 1991,13 which coin-
cided with new versions of the conjecture-making code of Graffiti.

4.2. Forever. In 1990, Fajtlowicz began planning and later coding his ideas for
enhancing the algebraic form of Graffiti’s conjectures. Conjectures would be in-
equalities between terms of an arbitrary real-based algebra. The change in the
form of conjectures marked the beginning of a fundamental change in the way that
the program would be developed. Obviously, the program could no longer begin by
determining all correct relations relative to the database. The rst application of
the new capability of generating algebraic expressions, which we call terms, was in
a procedure named Forever. The user de�nes a property and a background14 . For-
ever then systematically generates a pair of terms (algebraic expressions) subject
to the beagle heuristic, evaluates the pair of terms for each model (in the database),
searches for a relation between the pair of terms that holds for the graphs in the
user-selected property, and applies the Echo heuristic. If the relation survives this
cycle of tests, it is reported to the screen; in either case, Forever returns to the rst
step of generating a pair of terms and the cycle continues. This version's implemen-
tation was short lived as it made too many conjectures. But this marked the end of
the era in which Graffiti’s conjectures were only of the form I � J , I � J + K and
I + J � K + L. No conjectures generated by the Forever version were included in
Written on the Wall ; however, the author's classroom notes, dated October 1990,
document that Fajtlowicz presented conjectures of this version to his class. The
focus of the classroom note is the following conjecture (which is correct).

13Given the recent successes of the educational applications of Graffiti we are more tempted
to return to the geometry version.

14The use of the words property and background (in Gra�ti) was given on p. 5 of this paper.

23 SOME HISTORY OF THE DEVELOPMENT OF GRAFFITI

Figure 16. A sample of the form of conjectures of Forever.

Conjecture (Forever). Let G be a simple graph. The minimum degree of G is
not more than twice its matching number15 .

4.3. Demonstration of Forever. The same database, as in the previous demon-
stration (in Section 3.9), was used as input for a demonstration of the execution
of Forever. Again, triangle-free graphs were selected as the property and simple
connected graphs as the background. The program's execution was terminated (by
the author) after about an hour; in that time it had generated 374 conjectures. The
screen capture in Figure 16 (which is about the midpoint of the list) indicates that
95 conjectures involving the relation \less than or equal to", and 72 conjectures
involving \greater than or equal to" had been generated. Further, we note that the
�rst three conjectures (seen in Figure 16) are false, and that the second is trivially
true for triangle-free graphs. As mentioned previously, the implementation of For-
ever was short lived, but in the development of Graffiti it serves as a transitional
moment in time from the old to the new.

4.4. Whatever. Later in 1990, Fajtlowicz had ideas for a procedure that would
generate its own properties and make conjectures on the properties that it discov-
ered. Of course, the Echo heuristic would be used. Thus, if the program made its
own properties, then it should also decide on respective appropriate backgrounds.
These ideas materialized as the procedure called Whatever. The planning of What-
ever set the stage for many discussions on what made a property interesting.

In practice, Whatever de�nes new properties based on the inequalities encoun-
tered during the generation of terms. A relation between a pair of terms is consid-
ered a candidate property if it satis�es equality on a certain speci�ed percentage
of the models available in the database. However, since the program maintains a
list of its discovered properties (and their respective backgrounds), it accepts a new
candidate property only if it is not equivalent to any of the previously discovered
properties. If the property is accepted, then the program's list of previously discov-
ered (in the current execution) properties and backgrounds is updated to incorporate
the new property. The code indicates that there was much experimentation with

15The matching number of a graph is the cardinality of a largest set of edges of the graph such
that no two edges have a vertex in common.

https://properties.If

24 ERMELINDA DELAVINA

Figure 17. The term menu.

16assigning backgrounds. During this process, the program also generates condi-
tional conjectures for the discovered properties, using a procedure very similar to
the one implemented in Forever.

After the development of Whatever, the properties generated by Whatever were
also made available for use with the 1980s heuristics. This is seen in the property
selection menu (Figure 5) of the 1980s version of Graffiti. Speci�cally, options 11
and 12 of the property selection menu allow a user to select program-generated
properties for use with the heuristics of the 1980s version.

Although no conjecture of Whatever is listed in [31], this version of Graffiti is
mentioned twice, once in [31] and another in [30]. In the �rst, Fajtlowicz included a
comment above conjecture 733 in Written on the Wall, \Actually the new version
of Gra�ti de�nes properties to make conditional conjectures. In the past to get
conditional conjectures, properties had to be de�ned by a user." And in [30] he
wrote, \...the current version can de�ne its own properties. One of the properties
discovered by Gra�ti is the class of all graphs in which the smallest eigenvalue has
multiplicity 1." Lastly, the author's notes, dated January 1991, document a condi-
tional conjecture (also correct) of this version, which was noted (perhaps because
of its similarity to the one made by Forever, which was mentioned previously).

Conjecture (Whatever). If G is a bipartite graph17 , then the minimum degree
of G is not more than its matching number.

Whatever made even more conjectures compared to Forever. Thus, utilization
of this version was also short lived as Fajtlowicz had other ideas,18 which we soon
pursued. However, during this time, there were several technical user-oriented
enhancements.

16If memory serves, we ended up favoring tight backgrounds, that is, the smallest background
possible. Although, the code of Whatever does not refect this, it was evident in a procedure
called Arbolito, which was a procedure in which the ideas of Dalmatian and Whatever were
simultaneously implemented.

17A bipartite graph is a graph whose vertices can be partitioned into two disjoint independent
sets.

18Upon reviewing the code, a list of problems and possible improvements noted by Fajtlowicz,
served as reminders.

�
�

�

�
�

25 SOME HISTORY OF THE DEVELOPMENT OF GRAFFITI

Since neither of Forever nor Whatever had halting conditions (as suggested by
their names), it quickly became obvious that we would need a method for interrupt-
ing the program and later resuming the program. Further, since the data structures
for conjectures were signi�cantly di� erent (than those of the 1980s version), a ftch-
like feature, which we named term, was needed. The term option allows for viewing
the list of properties discovered by the program, viewing the list of conjectures for
a selected property, viewing a particular conjecture and its corresponding evaluated
terms, and many other options, as can be seen in Figure 17.

Although the code for Whatever still exists,19 it is not presently executable.
Thus, a demonstration in this paper for Whatever is not presented.

5. The Dalmatian Heuristic

As 1991 approached, Fajtlowicz proposed a di erent strategy for generating con-
jectures. The di erences would be major. Firstly, the approach (as compared to
previous versions) would be completely reversed (see Figure 18). In this version, the
rst heuristic applied by the program would now test for informativeness of each
conjecture, and correctness would become the second consideration. In Fajtlow-
icz's On Conjectures of Graffiti V [30] appeared the �rst description of Dalmatian,
which we reproduce below.

\The program keeps track of conjectures made in the past and when it
runs across a new candidate for a conjecture then rst of all it veri�es if
there is an example (in the database) demonstrating that the conjecture
does not follow from the previous conjectures. If there is no such exam-
ple then the conjecture is rejected as non-informative. If there is one,
then the program proceeds with testing the correctness of the conjec-
ture, and �nally it veri�es whether the conjecture should be rejected by
one of its other heuristics. If the conjecture is accepted by the program
then the list of conjectures is revised and those conjectures which are
less informative than the new one are removed from the list and stored
separately in the case the new conjecture will be refuted in the future."

Another major di erence (not described above) was that the new approach would
be driven by a larger goal. Speci cally, the larger objective (as opposed to simply
�nding single relations) is to characterize a fixed term20 in terms of algebraic ex-
pressions involving the other invariants. That is, Dalmatian searches for a system
of inequalities such that each inequality bounds a fixed term. In practice, Dalma-
tian stops if and only if for every model G in the database there exists a conjecture
on the list whose touch number21 was contributed to by the model. Thus, in addi-
tion to providing a list of conjectured bounds, say for example that x(G) � c1(G),
x(G) � c2(G),..., x(G) � ck(G) whenever G has property P , for a user-selected
term, x, and a user-selected property, P (that de�nes a class of graphs), the entire
list is interpreted as the following conjecture.

19This code is still in existence, however, the program's code as undergone multiple changes
as it had to be adapted to di �erent compilers over the years.

20In Section 4.2, we described that the stream of algebraic combinations of invariants would be
referred to as terms. By a fixed term we mean an algebraic combination of invariant(s) (selected
by a user) that is to remain unchanged (for the duration of an execution).

21This was de�ned in Section 3.9 as the number of models in the database for which the relation
is equality.

https://terms.By

�

�

�

� �

26 ERMELINDA DELAVINA

Figure 18. Dalmatian overview.

For every model G satisfying property P ,

x(G) = maximum of fc1(G), c2(G),..., ck(G)g.
In practice, the program generates one stream of terms (compared to two streams

generated in Forever). For each instance of the stream of terms, the program rst
tests for \Dalmatian improvement" (see Figure 18); this is a test for determining if
for at least one model (in the database) the candidate conjecture provides a closer
bound (compared to previously accepted conjectures) for the fixed term selected by
the user.22 If an improvement has been found, only then is the candidate conjec-
ture tested for correctness subject to the models in the database. Further, if the
program accepts the conjecture, the program then revises its list of accepted conjec-

23tures, called tree. If a newly accepted conjecture provides a closer bound (for all
models in the database) compared to any combination of the previously accepted
conjectures in tree, then a revision of the list may mean that some conjectures are
moved to the program's list of superceded conjectures, called mute. Once the list
tree has been revised, the program checks if the halting condition described above
is satis�ed. In the program and in the diagram of Figure 18, the halting condition
is called Bingo. The program reports its progress periodically, after a user speci ed
number of iterations. Speci�cally, it reports its current list of accepted conjectures

22Most often a term equivalent to an invariant is xed; Minuteman conjectures [32], and the
educational applications [6] and [54] are exceptions.

23The accepted conjectures and removed conjectures are stored in separate structures and
periodically stored to les called tree.dat and mute.dat, respectively; references to the les are
seen in Figure 17.

�

�

27 SOME HISTORY OF THE DEVELOPMENT OF GRAFFITI

Figure 19. The original Autograph.

and for each of these it reports two numerical measures (computed with respect to
the database), the touch number and the average ratio24 .

With the exception of the heuristic echo, which can be implemented by Dalma-
tian in the testing for Dalmatian improvement and plausibility, none of the other
heuristics of the 1980s version are utilized by Dalmatian. That irin is not necessary
is obvious, and instances for which cncl and beagle might still be useful are rare in
the author's experience.

Before presenting a demonstration of the Dalmatian heuristic, we discuss two
other developments that took place at about the same time, both of which relate
to expanding the number of models accessible to the program.

5.1. Autograph and Multiple Databases. In this section, we described two
early experiments of graph generation, a later development of a method for utiliz-
ing more graphs in Graffiti, and an experiment associated with these developments.
In his 1989 paper, On Conjectures and Methods of Graffiti [28], Fajtlowicz men-
tioned a procedure called Autograph; speci�cally, he wrote \Autograph is a recent
addition, searching for counterexamples to false conjectures." The input for this
procedure could be prepared by selecting the option \prepare for auto," from the
menu displayed in Figure 7. A search in the code of Algernon was conducted, as this
Autograph described by Fajtlowicz would be a function of Algernon. Although no
longer utilized25 , the code was located (a sample is given in Figure 19). A trace of
the relevant code indicates that in general the procedure searches for counterexam-
ples to conjectures by using a given \starting graph," and rst adding or removing
edges subject to the e ect on conjectures. If the addition or removal of edges ceases
to produce an e ect on the conjectures (before a counterexample is encountered),
then a new vertex is introduced to the starting graph and the process of adding or
removing edges begins again. In the 1991, the name Autograph was again used for
a procedure which generated graphs, which we describe next.

24The average ratio is an approximate probabilistic measure of how close the values are on the
left and right side of the inequality.

25As described in Section 2.2 On the Code of Algernon, currently the program has procedures
for inputting graphs in many forms, such as those of the programs of McKay, Brinkmann and
Skiena.

�

28 ERMELINDA DELAVINA

In early 1991, Fajtlowicz suggested pursuing generation of graphs. A procedure
named Autograph was designed, which generated graphs by applying graph oper-
ations (such as the complement or join) to a set of simple graphs. The names of
derived graphs were expressed in polish notation. The generation of isomorphic
graphs was, of course, a major concern. The procedure was designed to check for
certain obvious redundant combinations, such as, the complement of the comple-
ment of a given graph26 , such combinations we called axioms. More complicated
combinations were deduced by the procedure once the database (composed of Au-
tograph’s graphs and various invariants which were computed for each graph) was
built. The deduced redundant combinations, which we called maxioms, were output
to a le and used (similarly as axioms) in subsequent re-executions of the program.

This development coincided with the development of the Graffiti-System’s uti-
lization of multiple databases. As previously described, the programs at this time
were running on the VMS/VAX Station called Charly, and extending the data
structure (of the database) to accommodate more models was not possible, and
thus one of the author's tasks (at around this time) was to adapt Graffiti and
Algernon to utilize and generate (respectively) multiple databases.

The graph generating procedure Autograph was adapted to create multiple data-
bases without interrupting its execution. For the 1980s version of Graffiti, before
the user is prompted for a command there is a prompt \which dbs?", which allows
a user to select the database to be used the session. For the Dalmatian version, one
database is designated the \top" database on which the \Dalmatian improvement"
is to be tested, and all other databases are utilized in the plausibility phase of the
Dalmatian heuristic.

At about the same time the development of the procedure Autograph took place,
Fajtlowicz proposed a project to analyze graphs available in the library modules of
Algernon. One of the questions of interest, was how often any given graph served
as a counterexample in runs of Graffiti. The interest in this was, perhaps in part,
due to the issue of limited computer memory resources, but we also wanted to
compare conjectures based on the Autograph database with conjectures generated
by the program when using its database of counterexamples as constructed by a
library module. The author's notes indicate that after generating a database with
Autograph, we set the 1980s version of Graffiti to generate conjectures implementing
irin, and checked (with ftch) the correctness of conjectures with respect to another
database (built by a library module) composed mainly of counterexamples. Using
the latter database and again irin, the program generated about the same number
of conjectures. As a result of this experiment, we concluded that counterexamples
to conjectures based on the Autograph database were very special graphs such as
the Peterson graph and some critical Ramsey graphs.

Another experiment with the Autograph procedure involved computing invari-
ants recursively for graphs constructed through operations. Inspection of the code
refects that the values of many simple invariants were determined for some opera-
tors. The author's notes indicate that a lot of time was spent considering possible
algorithms, but the experiment was prematurely discontinued27 .

26The complement of the complement of a graph is isomorphic to the graph.
27As this occurred during the spring of 1991, there were other developments in progress and

of course nal exams.

�

29 SOME HISTORY OF THE DEVELOPMENT OF GRAFFITI

Figure 20. Graffiti.pc: Dalmatian.

5.2. Demonstration of the Dalmatian Heuristic. In 2000-2001, the author
developed the program Graffiti.pc. A long-term goal for its development was to have
a program similar to Graffiti on a PC platform. A short-term goal for the initial
version of Graffiti.pc was to develop a program that could be used for undergraduate
research; see [13] and [6] for the educational application. Graffiti.pc is a system of
three programs, two of which are C++ programs Builddbs (analogous to Algernon)
and Dalmatians ; and the third component is a Visual Basic user interface. As
suggested by the component called Dalmatians, the program's main heuristic is the
Dalmatian heuristic.

Some comparison of the two systems was rst given in [13]. At this point, we
discuss only the implementation of the Dalmatian heuristic, and note the following
di�erences. There are three di�erences in the implementation of the Dalmatian
heuristic. Two of the di�erences are incidental in the sense that they do not directly
a� ect accepted conjectures (i.e. those that would appear in Graffiti’s list called
tree). In Figure 20, the intermediate step \irin: transitivity" is used only for
separately reporting instances of \transitivity" (i.e. cases in which a previously
accepted conjecture follows from a newly accepted conjecture); we shall see an
instance of this in the demonstration. Secondly, Graffiti.pc does not (at present)
maintain a list of superceded conjectures28 (analogous to Graffiti’s mute list). The
di�erence that may a ect the list of accepted conjectures includes a user option
of insisting on a minimum touch number for accepted conjectures, however, this is
imposed only after the test for a \Dalmatian improvement".

For the demonstration of the Dalmatian heuristic, the fixed term selected was
the bipartite number. The choice of this term was motivated by Bill Waller's

28An example of a superceded conjecture is presented in the demonstration.

https://Graffiti.pc
https://Graffiti.pc
https://Graffiti.pc
https://Graffiti.pc
https://Graffiti.pc

�

30 ERMELINDA DELAVINA

interest in Graffiti’s conjecture number 747 in [31], which states that For G a
simple connected graph, the average distance of G is not more than half the order
of a bipartite subgraph. The other parameter settings for Graffiti.pc were as follows.

� The property was selected as \simple connected graphs".
� The relation was set to greater than or equal.
� The operators used to generate terms included the 9 unary operators a half,

a third, square root, multiplicative inverse, additive inverse, the foor, the
ceiling, and plus or minus one; and the 3 binary operators addition, multipli-
cation, and one operand applied as an exponent to another operand.

� The minimum touch number was set to ten.
� The \top" database was composed of most of the 128 invariants utilized in

the previous demonstrations in this paper, and of about 200 graphs similar
to those present in the previous demonstrations (in this paper).

� One parameter, not currently accessible through the interface29, is for the
utilization of multiple databases for the plausibility test of Dalmatians. For
this demonstration, about 40,000 small graphs (most acquired from the Com-
binatorial Object Server's web interface for Brendan McKay's makeg) located
in the multiple databases30 of Graffiti.pc were used.

Although, the halting condition Bingo had not been satis�ed (there were about
60 graphs in the \top" database for which no conjecture on the list predicted their
bipartite number), the author forwarded the following list of 18 conjectures to the
mailing list mentioned in Section 3.5. Among the 18 conjectures, 16 were the
conjectures accepted by Dalmatians, one was an incidental conjecture reported in
the \irin: transitivity" step, and another was a superceded conjecture which was
forwarded to the mailing list at Bill Waller's request; he was aware of it as the
author had relayed to him an earlier list of the program's progress. Shortly after
the list31 was sent, the program execution32 was terminated. Before presenting
conjectures, we introduce some notation with references to de�nitions.

Notation 5.1. Let G be a simple connected graph. We will let b(G) denote the
bipartite number of G (De�nition 3.3), diam(G) will denote the diameter of G,
rad(G) will denote the radius of G, ecc(G) will denote the average eccentricity of
G (De�nition 3.1), and λ(G) will denote the maximum of local independence of G
(De�nition 3.5).

Conjecture 24. Let G be a simple connected graph. Then

b(G) � diam(G) + λ(G) − 1.
Conjecture 25. Let G be a simple connected graph. Let fG(1) denote the frequency
of degree one in the degree sequence of G. Then

b(G) � diam(G) + fG(1) − 1.
Conjectures 24 and 25 were proven by Waller and the author [17].

Conjecture 26. Let G be a simple connected graph. Then

b(G) � 2 � rad(G).

29The author set the parameter in a le.
30The use of multiple databases in Graffiti.pc is similar that described in Section 5.1.
31This list is now part of the list Written on the Wall II, available at

http://cms.dt.uh.edu/faculty/delavinae/research/wowII/ see [12].
32It ran for about 70 hours for bipartite number. A session for path number was initiated.

http://cms.dt.uh.edu/faculty/delavinae/research/wowII
https://Graffiti.pc
https://Graffiti.pc
https://Graffiti.pc

31 SOME HISTORY OF THE DEVELOPMENT OF GRAFFITI

Conjecture 26 was proven by Fajtlowicz in [34]; an alternate proof was given by
Waller [17].

Conjecture 27. Let G be a simple connected graph. Then

b(G) � 2 � (rad(G) − 1) + λ(G).

Conjecture 27 is a superceded conjecture (removed, from the list of accepted
conjectures, during the update phase described previously) included at Waller's
request; he communicated a proof for b(G) � 2 � rad(G) + λ(G) - 5 (see [17]).

Notation 5.2. Let G be a simple graph. We let α(G) denote the independence
number of G.

Conjecture 28. Let G be a simple connected graph. Then
diam(G)b(G) � α(G) + d e.3

Conjecture 29. Let G be a simple connected graph. Let M be the vertices of
maximum degree of G, and let dmax(M) be the maximum distance between vertices
of the set M . Then p

b(G) � α(G) + d dmax(M)e.
Conjecture 30. Let G be a simple connected graph. Then

b(G) � becc(G) + λ(G)c.
Conjecture 31. Let G be a simple connected n-vertex graph, and let deg(G) denote
the average degree of G. Then

nb(G) � .bdeg(G)c

Conjecture 32. Let G be a simple connected graph. Let B be the set of boundary
vertices of G, and let d(B,V) denote the average of all nonzero distances between
vertices of B to vertices of the graph. Then

b(G) � d2 � d(B, V)e.
Conjecture 33. Let G be a simple connected graph. Let d(V) denote the average of
all nonzero distances between vertices of the graph G. Let B be the set of boundary
vertices of G, d(B, V) will denote the average of all nonzero distances between
vertices of B to vertices of the graph. Then

d2 � d(B, V)e � d2 � d(V)e.
Conjecture 33 did not appear on the list of Dalmatians accepted conjectures; it

is a product of the \irin: transitivity" step as described previously. Shortly after
the list of conjectures was forwarded to the email list, Bill Waller and the author
found a counterexample to Conjecture 33. (It is described in [17].)

Conjecture 34. Let G be a simple connected graph. Let M be the vertices of
maximum degree of G, and let d(M, V) denote the average of all nonzero distances
between vertices of M to vertices of the graph. Then

b(G) � bα(G) + d(M,V) c.2

Conjecture 35. Let G be a simple connected graph. Let de(v) denote the number
of vertices at an even distance from vertex v. Let de(G) denote the minimum of
fde(v)jv 2 V (G)g. Then

de(G)b(G) � λ(G) + d e3

32 ERMELINDA DELAVINA

Conjecture 36. Let G be a simple connected graph. Let de(v) denote the number
of vertices at an even distance from vertex v. Let de(G) denote the minimum of
fde(v)jv 2 V (G)g. Then

b(G) � 2 � d 1 (1 + de(G))e3

Conjecture 37. Let G be a simple connected graph. Let dd(G) denote the number
of distinct degrees of the degree sequence of G. Then p

b(G) � d1 + 4 dd(G)e
Conjecture 38. Let G be a simple connected graph. Let s denote the minimum of
fjN(fu, vg)j : for fu, vg an edge of Gg. Let t(G) denote the number of subgraphs
of G isomorphic to a complete graph on 3 vertices. Then

b(G) � s1−t(G).

Ryan Pepper communicated a proof of Conjecture 38 to the author.

Notation 5.3. Let G be a simple connected graph on vertex set V . Let S be a
subset of the vertices of G. The minimum distance between distinct vertices of S
will be denoted by dmin(S). The maximum distance between vertices of S will be
denoted by dmax(S).

Conjecture 39. Let G be a simple connected graph. Let A be the subset of vertices
of G that have minimum degree in G. Let M be the subset of vertices of G that
have maximum degree in G. Then p

b(G) � dmin(A) + 4 dmin(M)

Conjecture 40. Let G be a simple connected n-vertex graph. Let A be the subset
of vertices of G that have minimum degree in G. Let �(Gc) denote the maximum
degree of the complement of G. If n mod �(Gc) > 0, then

1b(G) � dmax(A) + .n mod Δ(Gc)

Conjecture 41. Let G be a simple connected graph. Let A be the subset of ver-
tices of G that have minimum degree in G. Let E(M c) be the set of edges of the
complement of G induced by vertices of maximum degree in the complement of G.
Then p

b(G) � dmin(A) + 4 jE(M c)j.

6. Closing Comments

Once the demonstrations of the 1980s version executions were described for this
paper, Fajtlowicz communicated to the author one main di�erence not discussed in
the text. Speci�cally, he noted that he was usually adding counterexamples one at
a time (unlike the demonstrations of Sections 3.8 and 3.9) and then re-executing the
program. He further noted that one can learn much by adding one counterexample
at a time.33 After experiencing the compilation of demonstrations of the heuristics
of the 1980s version, the author imagines that adding counterexamples one at a
time may have also hinted at more of the history of the motivation for heuristics of
Graffiti over the years; however, this would have only been a speculative motivation.
Even so, an interesting follow-up paper might be some attempt at an analysis of
each heuristic on particular types of databases.

33This seems to have inspired the Little Red Riding Hood style for implementing the program
as described in [35].

33 SOME HISTORY OF THE DEVELOPMENT OF GRAFFITI

Since Graffiti’s inception almost 20 years ago, in addition to the many mathe-
matical research papers inspired by conjectures of Graffiti, the program has been
discussed and compared in a variety of other papers. In 1989, an article in The
New York Times [48] discussed Graffiti and its novelty as a conjecture-generating
program. In the same year an inset to an article on automated theorem proving
appeared in Science [8] and in 1993 an article discussing Graffiti appeared in Scien-
tific American [47]. Over the years as computers have improved and as interest in
discovery programs has increased, appropriately the nature of references to Graffiti
has changed. Beginning in the late 1990s, there have been some published articles
using the 1980s version of Graffiti or its conjectures for comparison and discussion;
some examples are listed next.

� Pat Langley's 1998 article, The Computer-Aided Discovery of Scientific Knowl-
edge [49],

� Raul E. Valdes-Perez's 1998 article, Why Some Machines do Science Well
[57],

� Herbert Stoyan and Michael Müeller's 1999 article, For the Creative, Knowledge-
based Discovery of Interesting Mathematical Concepts with Methods of Arti-
ficial Intelligence [56] (Dutch),

� Simon Colton's 2000 article, On The Notion Of Interestingness In Automated
Mathematical Discovery [9],

� Pierre Hansen and Hadrien M�elot's 2002 article, Computers and Discovery in
Algebraic Graph Theory [44] and

� Pierre Hansen's 2002 article, Computer’s in Graph Theory [45].
In addition to Fajtlowicz's 1995 introductory description of the Dalmatian ver-

sion, On conjectures of Graffiti V, other published papers that include discussion
and comparison of the Dalmatian version of Graffiti include the author's 2002 ar-
ticle, Graffiti.pc [13] and Craig Larson's 2002 article, Intelligent Machinery and
Mathematical Discovery [50].

As previously noted, the conjectures of Graffiti have inspired (to the present)
many papers by many well known researchers; for a list of bibliographical infor-
mation on papers on conjectures of Graffiti see [10]; for a list of many of Graffiti’s
conjectures with some comments of Fajtlowicz see [31]. At this point, a majority
of these papers are on conjectures of the 1980s version of Graffiti. Thus in closing,
we provide a topical summary of the applications of the 1990s version of Graffiti
with relevant conjectures, publications, preprints, and theses cited (those of which
the author is aware).

� Independence number, chromatic number, length of a longest path and a
chip-�ring game (see conjectures numbered 747-757 in [31])

� The jet number of a graph (see conjectures numbered 778-782 in [31], also
[14], [15], and [18])

� Number theory (see conjectures numbered 783-785 and 800-813 in [31])
� Ramsey r(3,a)-critical graphs (see conjectures 786-791 in [31])
� DNA sequences (see conjecture 798 and related comments in [31])
� Invariant interpolation problems (see conjectures 814-821 [31], also [38])
� k-Chromatic ramseyan properties (see conjectures 822-839 in [31], also [15]

and [19])

https://Graffiti.pc

34 ERMELINDA DELAVINA

� Chemistry (fullerenes) (see conjectures 840-862 in [31] and conjectures 895-
913 in [32], also [37], [39] and [41])

� Triangle-free ramseyan properties (see conjectures 862-894 in [31], also [2],
[3], [15] and [20])

� Chemistry (benzenoids) (see conjectures 914-1005 in [33])

The following applications of Graffiti are listed separately as the do not appear
in [31], [32] or [33].

� Maximum number of leaves of a spanning tree (see conjectures 1-7 in [11],
also [12])

� Independence number (see [11] and [16])
� Educational (see [6], [13],[35] and [54])

Acknowledgements. The author wishes to thank Inga Matthews for her interest
in the project and the many suggestions, which helped improve this paper. A note
of gratitude is extended to Siemion Fajtlowicz for allowing the author access to all
current and old code of the two versions of Graffiti. In addition, a note of thanks
is extended to the anonymous referees of this paper for their helpful suggestions.

References

[1] T. Brewster, M. Dineen and V. Faber, Computational attack on conjectures of Gra�ti: new
counterexamples and proofs, Discrete Math. 147 (1995), 1-3.

[2] B. Bollob�as and O. M. Riordan, On some conjectures of Gra�ti, Discrete Math. 179 (1998),
223-230.

[3] B. Bollob�as and O. M. Riordan, Colourings generated by monotone properties, Random Struc-
tures Algorithms 12 (1998), 1-25.

[4] G. Brinkmann, CaGe, available at www.mathematik.uni-bielefeld.de/~CaGe/fullerenes.html.
[5] S. Chen, On selected conjectures of Gra�ti, Ph.D. thesis, University of Houston, (1990).
[6] B. Chervenka, Graph theory Gra�ti/Gra�ti.pc style, Senior Project Report, University of

Houston-Downtown, (2001).
[7] F. Chung, The average distance is not more than the independence number, J. Graph Theory

12 (1988), 229-235.
[8] B. Cipra, Inset: The sorcerer's apprentice (computer-assisted conjectures), Science 244,

(1989).
[9] S. Colton, On the notion of interestingness in automated mathematical discovery, Interna-

tional Journal of Human Computer Studies 53 (2000), 351-375.
[10] E. DeLaVina, On conjectures of Gra�ti, a website regularly update with biblio-

graphic information as it relates to the program Graffiti and its conjecture, available at
http://cms.dt.uh.edu/faculty/delavinae/research/wowref.htm, (2003).

[11] E. DeLaVina, S. Fajtlowicz and B. Waller, On some conjectures of Griggs and Gra�ti, to
appear in Graphs and Discovery, American Mathematical Society.

[12] E. DeLaVina, Written on the Wall II, a list of conjectures of Gra�ti and Gra�ti.pc available
at http://cms.dt.uh.edu/faculty/delavinae/research/wowII/.

[13] E. DeLaVina, Gra�ti.pc, Graph Theory Notes of New York XLII (2002), 26-30.
[14] E. DeLaVina, About jets of independent sets and the Szekeres-Wilf invariant, Bull. Inst.

Combin. Appl. 24 (1998), 47-50.
[15] E. DeLaVina, Ramseyan properties and conjectures of Gra�ti, Ph.D. thesis, University of

Houston, (1997).
[16] E. DeLaVina and B. Waller, Independence, radius, and path covering in trees, Congr. Numer.

156 (2002), 155-169.
[17] E. DeLaVina and B. Waller, On some conjectures of Gra�ti.pc on the maximum order of

induced subgraphs, preprint (2004).
[18] E. DeLaVina, An investigation of the counter-independence and the jet number of a graph,

Master Thesis, University of Houston, (1993).

https://Gra�ti.pc
https://Gra�ti.pc
http://cms.dt.uh.edu/faculty/delavinae/research/wowII
https://Gra�ti.pc
http://cms.dt.uh.edu/faculty/delavinae/research/wowref.htm
https://Gra�ti/Gra�ti.pc
www.mathematik.uni-bielefeld.de/~CaGe/fullerenes.html

35 SOME HISTORY OF THE DEVELOPMENT OF GRAFFITI

[19] E. DeLaVina and S. Fajtlowicz, Ramseyan properties of graphs, Electronic Journal of Com-
binatorics 3 (1996).

[20] E. DeLaVina, Ramseyan properties of connected triangle-free graphs, Congr. Numer. 148
(2001), 185-192.

[21] M. J. Dinneen, A computational attack on Gra�ti's matching and chromatic number con-
jectures, Los Alamos National Laboratory manuscript, (1992).

[22] Ann Dowker, Computational estimation strategies of professional mathematician, Journal
for Research in Mathematics Education (1992), 45-55.

[23] P. Erdös, M. Sachs and V. Sos, Maximum induced trees in graphs, J. Graph Theory 41
(1986), 61-79.

[24] S. Fajtlowicz and Bill Waller, On two conjectures of Gra�ti, Congr. Numer. 55 (1986), 51-56.
[25] S. Fajtlowicz, On conjectures of Gra�ti, Discrete Math. 72 (1988), 113-118.
[26] S. Fajtlowicz, On conjectures of Gra�ti II, Congr. Numer. 60, (1987). 189-197.
[27] S. Fajtlowicz, On conjectures of Gra�ti III, Congr. Numer. 66 (1988), 23-32.
[28] S. Fajtlowicz, On conjectures and methods of Gra�ti, Proceedings of the 4th Clemson Mini-

conference on Discrete Mathematics, (1989).
[29] S. Fajtlowicz, On conjectures of Gra�ti IV, Congr. Numer. (1990), 231-240.
[30] S. Fajtlowicz, On conjectures of Gra�ti V, Proceedings of the Seventh Quadrennial Interna-

tional Conference on the Theory and Applications of Graphs 1 (1995), 367-376.
[31] S. Fajtlowicz, Written on the Wall, a list of Conjectures of Gra�ti, available from Fajtlowicz.
[32] S. Fajtlowicz, Fullerene Expanders, a list of Conjectures of Minuteman, available from Fajt-

lowicz.
[33] S. Fajtlowicz, Pony Express, an extension of Written on the Wall on conjectures about car-

cinogenic and stable benzenoids, available from Fajtlowicz.
[34] S. Fajtlowicz, A characterization of radius-critical graphs, J. Graph Theory 12 (1988), 526-

532.
[35] S. Fajtlowicz, Toward fully automated fragments of graph theory, Graph Theory Notes of

New York XLII (2002), 18-25.
[36] S. Fajtlowicz, Toward fully automated fragments of graph theory, II, submitted.
[37] S. Fajtlowicz, On representation and characterization of buckmisterfullerene C60, submitted.
[38] S. Fajtlowicz, Conjectures about self and acceleration of programs, manuscript, available from

Fajtlowicz.
[39] S. Fajtlowicz and C. Larson, Graph-theoretical independence as a predictor of fullerene sta-

bility, Chemistry Physics Letters 377 (2003), 485-490.
[40] O. Favaron, M. Maheo and J-F. Sacle, On the residue of a graph, J. Graph Theory 15 (1991),

39-64.
[41] P. W. Fowler, K. M. Rodgers, S. Fajtlowicz, P. Hansen, and G. Caporossi, Facts and conjec-

tures about fullerene graphs, leapfrog, cylinder and Ramanujan fullerenes, EuroConference
Alcoma99, Springer, (2000), 134-146.

[42] J. R. Griggs and D.J. Kleitman, Independence and the Havel-Hakimi residue, Discrete Math.
127 (1994), 209-212.

[43] S.L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a graph,
SIAM J. Appl. Math. 10 (1962), 496-506.

[44] P. Hansen and H. M�elot, Computers and discovery in algebraic graph theory, Linear Algebra
and Applications 356 (2002), 211-230.

[45] P. Hansen, Computers in graph theory, Graph Theory Notes of New York XLIII (2002),
20-34.

[46] V. Havel, A remark on the existence of �nite graphs (Czech), Casopis Pest. Mat. 80 (1955),
477-580.

[47] J. Horgan, Death of proof, Scientific American, October (1993).
[48] G. Kolata, Mathematicians look for computerized ideas, New York Times, June (1989).
[49] P. Langley, The computer-aided discovery of scienti� c knowledge, Discovery Science: First

International Conference, DS’98, Fukuoka, Japan, December 1998. Proceedings, Lecture
Notes in Computer Science, Springer-Verlag Heidelberg, (1998), 25 - 39.

[50] C. Larson, Intelligent machinery and mathematical discovery, Graph Theory Notes of New
York XLII (2002), 8-17.

[51] C. Larson, An updated survey of research in automated mathematical conjecture-making,
submitted.

36 ERMELINDA DELAVINA

[52] L. Lov�asz, Combinatorial Problems and Exercises, Academiai Kiado, (1979).
[53] B. McKay, makeg, available at http://www.theory.csc.uvic.ca/~cos/gen/grap.html.
[54] R. Pepper, On new didactics of mathematics-learning graph theory via Gra�ti, to appear in

Graphs and Discovery, American Mathematical Society.
[55] S. Skiena, The graphs of Gra�ti: a database of counterexamples to conjectures of Gra�ti,

available at ftp.cs.sunysb.edu.
[56] H. Stoyan and M. Müller,Zur kreativen, For the creative, knowledge-based discovery of in-

teresting mathematical concepts with methods of arti� cial intelligence (Dutch), Tagungsband
“Kreatives Denken und Innovationen in mathematischen Wissenschaften” - Jenaer Schriften
zur Mathematik und Informatik, (1999).

[57] R. E. Valdes-Perez, Why some machines do science well, 1998 International Congress on
Discovery and Creativity, (1998).

E-mail address: delavinae@uhd.edu

mailto:delavinae@uhd.edu
ftp.cs.sunysb.edu
http://www.theory.csc.uvic.ca/~cos/gen/grap.html

	Structure Bookmarks
	SOME HISTORY OF THE DEVELOPMENT OF GRAFFITI
	ERMELINDA DELAVINA
	Abstract. This paper provides some history of the development of the conjecture-making computer program, Graﬃti. In the process, its old and new heuristics are discussed and demonstrated.
	1. Introduction and Motivation
	Graﬃti is a conjecture-making computer program written in the mid-1980s by Siemion Fajtlowicz. Since its inception, Graﬃti’s conjectures have inspired about eighty papers, some by researchers such as Alon, Bollob.as, Chung, Erd¨os, Kleitman, Lov.asz, Pach, Seymour, Shearer and Spencer, and parts of ve Ph.D. theses (see [10]). For Fajtlowicz, the main interest in the automation of some of the conjecture-making processes was to understand what makes a good conjecture. This idea is a recurrent theme in the ser
	A motivation for the paper at this time is that interest in technical details not mentioned in Fajtlowicz's papers has increased as the use of computers in mathematical discovery expands. In particular, as computerized mathematical discovery develops into a discipline, papers on the processes of mathematical discovery programs provide useful resources to researchers with similar interests; see [50] for some history on mathematical discovery programs. Since announced open conjectures seem relevant to a progr
	-
	-
	-
	-
	-

	[33] (conjectures about benzenoids).
	As a student of Fajtlowicz in the early 1990s, the author's main contributions were to the development of the Dalmatian version of Graﬃti, rst described in [30]. The resources utilized to provide a description of the 1980s version of Graﬃti and some history of its development were mainly Fajtlowicz's papers [25, 26, 27, 28, 29], the program code, experimentation, and discussions with Fajtlowicz. The 1980s version of the program is described rst; demonstrations of heuristics and discussion of ancillary featu
	-

	Date: January 2003. Revised: April 2004. Key words and phrases. Gra.ti, , Graph Theory, Mathematical Discovery.
	Gra.ti.pc

	1
	1

	Figure
	Figure 1. Overview of Graﬃti.
	of these are collectively referred to as the 1990s version of the program. We then describe the Dalmatian heuristic of Graﬃti, and provide a demonstration of the Dalmatian heuristic implemented by .
	Graﬃti.pc

	2. The 1980s version
	In the early 1980s, Fajtlowicz proposed to a graduate student the task of writing a computer program that would make mathematical conjectures. The student was Shui-Tain Chen, and the program was called Little Paul. Although, Chen did not collaborate with Fajtlowicz on the development of the (distinct) program that a couple of years later would be known as Graﬃti, in 1990 she completed her Ph.D. thesis titled On Selected Conjectures of Graﬃti [5].
	In Fajtlowicz's On Conjectures of Graﬃti [25], submitted in mid-1986, which
	appeared in 1988 in Discrete Mathematics he described Graﬃti as follows: The basic idea of Gra.ti is that it \knows" certain graphs and it is capable of evaluating certain formulas from graph-theoretical invariants. If none of the graphs with which Gra.ti is familiar is a counterexample to a formula then the formula is considered to be a conjecture. At present Gra.ti is capable of computing about 60 invariants and it performs several functions but I shall describe here only those which are relevant to conje
	-
	-
	-

	This general description captured the state of development of the program until the early 1990s. Before providing further details of the general scheme of the 1980s version and a summary of its heuristics, we discuss the computer hardware resources available over time and provide a short description of the structure of Graﬃti’s code.
	Figure
	Figure 2. Graﬃti’s general structure in the 1980s.
	2.1. On the Code of Graﬃti. Graﬃti is a Pascal, module-based, menu-driven program, whose creation was realized on a University of Houston multi-user DECstation (whose CPU speed was by today's standards very slow); the disk space available to a user of the computer was probably around 10 KB. In 1990, the program was moved to a faster (but of course still slow by today's standards) VMS/VAX station, named Charly, with 8 MB of RAM. Still, at the time the major advantage was that the machine was dedicated to exe
	-
	-
	1
	-

	The conjecture-making code of Graﬃti is composed of almost two-dozen modules. Each module comprises procedures implementing a given functionality; for example, one module was dedicated to procedures for input, output and updating of the database (of models and invariants), others for procedures implementing heuristics and yet others for manipulating particular user-de.ned types.
	-
	-

	For a short time after Graﬃti’s creation, all procedures for composing graphs, computing invariants and generating conjectures were part of one program. Soon afterwards, due to memory limitations, the code could no longer be compiled in one section and was split into two separate programs. The conjecture-generating code remained in the collection of modules called Graﬃti; and the graph generating and invariant computing code is contained in a collection of modules called Algernon, which is discussed in the
	This was part of the Advanced Research Project grant, 0033652085-ARP.
	1

	[28] where Algernon is called a sub-program of Graﬃti. At other times, he and the author refer to the conjecture-making code as Graﬃti. In this paper, from this point on, the term Graﬃti-Systemwill be used to refer to both programs.
	2

	2.2. On the Code of Algernon. As seen in Figure 2, the input for Graﬃti, called a database, can be visualized as a 2-dimensional array, indexed by models and invariants. The task of constructing a database is performed by the sub-program Algernon. Similar to Graﬃti’s code, Algernon’s code is module-based, and each module comprises procedures implementing a given functionality. Two modules, called library and data of Algernon, are noted as there are multiple interchangeable versions of each, and will be refe
	-
	-
	-
	-

	In the 1980s, most graphs generated by Algernon were built using Pascal functions.For example, a star on n vertices can be generated as the joinof an empty graph on 1 vertex and an empty graph on n − 1 vertices. Algernon contains many standard graph operations, as well as some non-standard graph operations. We note that the current version of Algernon provides for other methods of including graphs in the database, such as reading adjacency sequences for graphs [35], reading adjacency lists for graphs from G
	-
	3
	4
	-
	-
	-

	2.3. On 1980s Conjecture-Making Scheme and Heuristics. For the 1980s version of the program, as Fajtlowicz described in [25] and [26], a list of certain types of formulas (most of which the user does not see) is generated, immediately after which heuristic(s) are applied. In this version, the purpose of a heuristic is deletion of trivial and otherwise noninteresting formulas, the correctness of which has been veri ed with respect to the database of graphs and invariants. Further, he described that the types
	In the past, this informal naming convention seems to have contributed to confusion regarding which stage of the process handles the computation of invariants (see Figure 2).
	2

	In Section 5.1 we note another method.
	3

	The join of two graphs G and H is the graph obtained from the union of G and H by adding edges {u, v} where u is a vertex of G and v is a vertex of H.
	4

	Figure
	Figure 3. Graﬃti’s help screen
	Deﬁnition 2.1. The girth of a graph with a cycle is the length of its shortest cycle. A graph with no cycle has in.nite girth (in the case of Graﬃti it is taken to be unde.ned). A graph is called triangle-free if its girth is not equal to three.
	In Graﬃti (and throughout this paper), the terms property and background are used to indicate classes of graphs satisfying speci.c relations between invariants. For example, suppose that one were interested in setting the program to generate conjectures about \triangle-free" graphs; in Graﬃti,the property would be the collection of graphs (in the database) satisfying the relation that the girth of the graph is not equal to three; and the background, if one wished to use \simple graphs", would be the collect
	Figure 2 captures the general conjecture-making process of the 1980s version, which we summarize as follows. Given as input a database of graphs and their computed invariants, a user-selected (conjecture-generating) command, a property and (possibly) a background, Graﬃti generates a list of certain types of formulas, immediately applies the heuristic(s), and lastly reports conjectures to a le or to the screen.
	In the rst three of Fajtlowicz's series of papers, On Conjectures of Graﬃti [25, 26, 27], four heuristics of this version of Graﬃti are discussed. We provide a summary of the four heuristics, irin, cncl, echo and beagle, described in print, and of those heuristics visible in the help menu of Graﬃti (Figure 3). The program's code suggests that updating the help menu ceased early on. We note that there are many conjecture-making commands (in the code and thus available to the program), which are combinations
	. The command ineq as described in the help menu (Figure 3), reports all relations between invariants available in the database (of the form I . J) satis.ed by the models in the database. This command is frequently employed by other heuristics.
	Figure
	Figure 4. Genealogy tree.
	. In the paper On Conjectures of Graﬃti [25], Fajtlowicz described irin, which deletes those conjectures which by transitivity follow from others; and cncl, which deletes those conjectures of the form I . J + K and I + J . K + L in which one of the invariants on the left is always smaller than an invariant on the right. In practice, irin calls ineq and rejects those inequalities that follow by transitivity.
	. In the paper On Conjectures of Graﬃti II [26], he described the heuristic echo, which implements the idea that a conjecture about a class of objects A (a property) is considered noninteresting if it can be generalized to a larger class B (a background). In practice, the user is prompted for a property and background. A relation is accepted (as a conjecture) if it is correct with respect to the models in the property but not for the models of the background. For example, an inequality between invariants is
	. In the paper On Conjectures of Graﬃti III [27], a discussion of the heuristic beagle was given. It implements the idea that conjectures involving concepts of a di.erent type are more likely to be interesting. While this heuristic is not explicitly listed in the help menu, it is launched by other heuristics as shall be demonstrated in Section 3. In the 1980s, the convention implemented for invariant names served some of the heuristics used by Graﬃti (for example, those that launch beagle). In [27], Fajtlow
	-

	. The rst heuristic on the help menu (Figure 3), but not discussed in [25], [26] or [27] is eiﬀ. The heuristic eiﬀ implements the idea that the fewer models in the background for which the relation holds, the more likely the relation is to be of interest for the models in the property. In practice, once this command is selected, the user is prompted to de.ne a property and a background,a
	. The rst heuristic on the help menu (Figure 3), but not discussed in [25], [26] or [27] is eiﬀ. The heuristic eiﬀ implements the idea that the fewer models in the background for which the relation holds, the more likely the relation is to be of interest for the models in the property. In practice, once this command is selected, the user is prompted to de.ne a property and a background,a
	relation and a probability. For eiﬀ, the probability associated with a relation is the ratio of the number of models in the background for which the relation holds to the number of models in the background. For each relation (candidate conjecture), if the probability associated with the relation is not more than the probability entered by the user, the relation is accepted as a conjecture.

	. The heuristic cheq, mentioned in the help menu (Figure 3), implements the echo heuristic for the equality relation. In practice, once this command is selected, the user is prompted de.ne a property and a background,and a lower bound for the distance (as de.ned above) between invariants on the left and right hand side of the relation.
	. The heuristic erin as described in the help menu (Figure 3), implements the echo heuristic for (the relation \.") and then applies the heuristic irin. . The heuristic erie as described in the help menu (Figure 3), implements the irin heuristic and then the heuristic echo. . The heuristic equs as described in the help menu (Figure 3), reports all equalities between invariants satis.ed by the models in the database.
	-

	3. Demonstrations of the 1980s version
	While the 1980s version is still executable (and thus a demonstration was possible), we note that many of that version's heuristics are no longer used. The reader will be alerted to one instance (in Section 3.6) in which that version of the program does not currently work as it did in the past due to changes of direction in the development of the program. Further, we note that the code of the heuristics was not altered for the demonstrations in this paper; in one case code was introduced as noted in Section
	-
	-
	-

	Once a database is available for input and execution of Graﬃti is initiated, the
	rst prompt is for a command. (See Figure 2 for the structure of the program.) If the user types \help", the screen in Figure 3 appears. As previously described, some of the command options, such as echo, irin, cheq, erin, irie,and rest, listed in the help screen of Figure 3 are heuristics (and combinations of them) of the 1980s version as described in [25] through [27]. Other command options that are visible on this menu, but not discussed in Fajtlowicz's papers, are for viewing and modifying the database,
	The following subsections include a discussion of the form of databases of graphs and invariants used for the demonstrations, a discussion on the form of Graﬃti’s output and Fajtlowicz's method for announcement of conjectures. The demonstrations include the ancillary commands called ftch and modi; and the conjecture-generating commands irin, ircn, dirn and erie. The conjecture-generating commands that are demonstrated launch the heuristics, irin, cncl, echo, beagle and combinations of them. As far as the au
	The following subsections include a discussion of the form of databases of graphs and invariants used for the demonstrations, a discussion on the form of Graﬃti’s output and Fajtlowicz's method for announcement of conjectures. The demonstrations include the ancillary commands called ftch and modi; and the conjecture-generating commands irin, ircn, dirn and erie. The conjecture-generating commands that are demonstrated launch the heuristics, irin, cncl, echo, beagle and combinations of them. As far as the au
	-
	-

	demonstrate the heuristic or as they seem of interest.

	3.1. Database for 1980s Version Demonstration. For the 1980s version, the database of graphs and their computed invariants was limited (due to computer memory issues) to about 200 graphs and 200 invariants. These numbers were increased and decreased at di erent times; however, due to the other large data types of this version (for example those used to hold candidate conjectures) they were usually limited to about 200. For the initial demonstration in this paper, the database was composed of 19 invariants a
	5

	We note that courtesy of the mathematics department at the University of Houston -Central Campus, the following demonstrations of the 1980s version of Graﬃti were performed on one of its Unix machines. This was not the case for the demonstration of Algernon. The databases of graphs and their computed invariants (for the demonstrations) were generated by the similar program (see [13] and Section 5.2) and formatted for input to Graﬃti. Other details, as they relate to some heuristics, on the form of the datab
	-
	-
	Graﬃti.pc

	rst, we briefy discuss the program's output and the convention used by Fajtlowicz to announce conjectures.
	3.2. Graﬃti’s Output and Announcing Conjectures. The rst public announcement of conjectures was in 1986 at the Southeastern Combinatorics and Graph Theory Conference. Eventually the 18 conjectures, announced at the conference and subsequently announced in his paper On Conjectures of Graﬃti [25], became conjectures 1 through 18 in the document now known as Writtenonthe Wall [31]. As will be seen in the following sections, Graﬃti’s output, the list of conjectures (see Figure 8 for a sample), is generally dire
	-
	-
	-

	Regarding his selection of which of the conjectures of the 1980s version of Graﬃti to announce, in the paper On Conjectures of Graﬃti II [26], Fajtlowicz explained
	These 19 invariants are a subset of the invariants that will be used in later demonstrations (beginning with the second demonstration of Section 3.7).
	5

	Figure
	Figure 5. Graﬃti’s select property menu.
	that \The two main reasons why I do not announce more conjectures of Gra.ti is that I can't estimate their value and I do not want to communicate too many true but trivial conjectures"; and later in On Conjectures of Graﬃti III [27] and in On Conjectures of Graﬃti V [30], he re-iterated this while discussing the 1980s version of Graﬃti.
	3.3. Demonstration of ftch. The ancillary command, ftch, is used to view the database of models and their computed invariants. The menu in Figure 5 appears once ftch is invoked. At this point, a user can select to view a subset of the input. Each choice available in the menu (in Figure 5), is designed to facilitate selection of models with user-speci.ed properties (de.ned by relations between invariants). In practice, each of the options1-9 and 13-14 use the following convention: i1 and i2 denote model inva
	6

	For our demonstration, suppose that a user seeks to view information about \triangle-free graphs" of the database. Before using ftch, one types the command listc to list all invariants present in the database along with their corresponding numerical identi.ers, and (one) notes the value corresponding to girth, (17 in the example database). Next, one enters the command ftch, selects option 5 (see menu in Figure 5) with 17 as the value for i1, the number 3 as the constant (for our example), and then enters 0
	3.4. A Demonstration of irin. The rst demonstration of a conjecture-making heuristic is a demonstration of irin with the property selected as \simple connected
	Although, 13 and 14 were clearly added later, they are included here since they are obviously options similar to the .rst 9. The two choices 11 and 12 for selecting a property were added after 1990, and thus will be discussed in Section 4.4.
	6

	Figure
	Figure 6. Graﬃti’s ftch menu.
	graphs" (as seen in Figure 7). As Fajtlowicz described in his papers on Graﬃti prior to Graﬃti V, the 1980s version of the program generates a collection of formulae (candidate conjectures which the user does not see), immediately after which heuristic(s) are applied by the program. As seen in Figure 7, the program generated 52 relations (correct with respect to the database), but only 23 were accepted as conjectures. Once prompted, the output was directed to the le conj.dat whose contents are seen in Figur
	-
	-

	Before discussing the conjectures, we digress to note that the query about storing in the master le (in the lower part of the second screen shot of Figure 7) is a feature that was added in the 1990s, and thus, that feature is discussed in Section 4 of this paper. The rst two options for storing or printing the conjectures are obvious. The third option, \prepare for auto", is briefy mentioned in [25] and [28], and discussed in Section 5.1.
	By the author's count, of the 23 conjectures accepted by irin (see Figure 8 for the full list) only six were interesting. Before discussing the status of the six conjectures mentioned, we provide many relevant graph theoretical de.nitions.
	Deﬁnition 3.1. Let G be a simple connected graph. The distance from vertex u to vertex v of G is the length of a shortest u, v-path. The average distance of G is the average of all distances between distinct pairs of vertices.
	The eccentricity of a vertex v of a graph is the maximum over all distances from v to the other vertices of the graph. The average eccentricity of a graph is the average of all eccentricities of vertices of the graph. The radius of the graph is the minimum eccentricity and the diameter of the graph is the maximum eccentricity.
	Deﬁnition 3.2. Let G be a simple connected graph. A vertex of G is called a boundary vertex if its eccentricity is maximum over all vertices. The average distance from boundary vertices of a graph is the average of all distances between boundary vertices and all other (distinct) vertices. A vertex of a graph is called a center vertex if its eccentricity is minimum over all vertices. The average distance
	-

	Figure
	Figure 7. Demonstration of irin.
	from center vertices of a graph is the average of all distances between center vertices and all other (distinct) vertices.
	Deﬁnition 3.3. A subset of vertices of a graph is called independent if no two vertices in the subset are adjacent. The cardinality of a largest independent set is called the independence number of a graph.
	The number of vertices of a largest induced bipartite subgraph of a graph is called the bipartite number of a graph. The number of vertices of a largest induced path of a graph is called the path number of a graph.
	The minimum number of vertex-disjoint paths needed to cover the vertices of a graph is called the path covering number of a graph.
	Among the six conjectures discussed next, one (as far as the author is aware) is open, two are known to have been previously made by Graﬃti, and three are easily proven and found in mathematics papers or texts.
	Conjecture 1. If G is a simple connected graph, then the average distance from boundary vertices of G is not more than independence number of G.
	Conjecture 1 is open (as far as the author is aware).
	Conjecture 2. [31, Conjecture labeled Gra.ti 0] If G is a simple connected graph, then the radius of G is not more than independence number of G.
	Conjecture 2 was proven in [40], [24], and later in [34]. At about the same time a slightly stronger result appeared in [23].
	Conjecture 3. [31, Conjecture labeled Gra.ti 2] If G is a simple connected graph, then the average distance of G is not more than the independence number of G.
	Figure
	Figure 8. Conjectures of irin demonstration.
	Conjecture 3 was proven in [7] (note that rst a slightly weaker relation was proven in [24].) We note that the fact that irin reported both Conjecture 3 and the relation in Conjecture 1 means that the average distance from the boundary vertices and the average distance of the graph are not comparable for all simple connected graphs.
	Conjecture 4. If G is a simple connected graph, then the diameter of G is not more than the bipartite number of G.
	The relation in Conjecture 4 is easily proven; it is the case that the stronger relation diameter of graph +1 is not more than the path number of graph is true (and easily proven) and mentioned in [23]. In view of this, it is reasonable to wonder why the irin heuristic made the bipartite number conjecture since indeed it follows by transitivity; however, as noted previously, this demonstration utilized a database with only 19 invariants and the path number was not among them. In Section 3.7 the database for
	Conjecture 5. If G is a simple connected graph, then the independence number of G is not more than the bipartite number of G.
	Conjecture 5 is easily proven.
	Conjecture 6. If G is a simple connected graph, then the path covering number of G is not more than the independence number of G.
	This is easily proven, and noted in [52].
	We note that according to Fajtlowicz the above demonstration is not typical in the sense that there can be many more conjectures accepted in one session of an execution of this version.
	3.5. Demonstration of cncl followed by irin. For the next demonstration, we generate sums of the 19 invariants, and then utilize the ircn command, which launches the cncl heuristic followed by irin. Sums of all (distinct) invariants were generated and added to the database using the modi command (Figure 9), by choosing option 10 (to add all sums of invariants) followed by option 3 (to store
	Figure
	Figure 9. Graﬃti’s modi menu.
	Figure
	Figure 10. Demonstration of ircn.
	Figure 10. Demonstration of ircn.

	the database). Next, the ircn command was given, with \simple connected graphs" selected as the property. The numeric values, 4214, 152 and 115 seen in Figure 10 are the number of relations between invariants and sums of invariants (correct with respect to the database), the number of those relations accepted by cncl,and the net number of relations accepted by irin, respectively.
	For this demonstration, we implemented a process for selecting conjectures similar to the one described in Section 3.2. First, the author categorized the conjectures as known, trivially uninteresting, and left 92 pending. Those were sent to Fajtlowicz with the request that he select some (in the spirit of what he was doing in the 1980s) that he would have considered including in Writtenonthe Wall. Within thirty minutes, he responded by marking 5 with some comments; the author added
	For this demonstration, we implemented a process for selecting conjectures similar to the one described in Section 3.2. First, the author categorized the conjectures as known, trivially uninteresting, and left 92 pending. Those were sent to Fajtlowicz with the request that he select some (in the spirit of what he was doing in the 1980s) that he would have considered including in Writtenonthe Wall. Within thirty minutes, he responded by marking 5 with some comments; the author added
	-
	-

	two more and sent 13 of them to an electronic mailing listfor Fajtlowicz's graduate students and a couple of colleagues. Note that many of the relevant de.nitions were given in De.nitions 3.1, 3.2 and 3.3.
	7
	-

	Among the thirteen conjectures sent to the mailing list were the 6 conjectures (with similar comments) already mentioned in Section 3.4, and the following seven conjectures.
	Conjecture 7. If G is a simple connected graph, then the diameter of G is not more than the independence number of G plus the radius of G.
	The conjecture listed above was sent with Fajtlowicz's comment, \This true because the diameter is not more than twice the radius, but the case of equality is of interest."
	Conjecture 8. If G is a simple connected graph, then the diameter of G is not more than the average eccentricity plus the radius of G.
	Conjecture 8 was resolved shortly after the list was sent to the group. Bill Waller pointed out that this is also true, and the argument is similar to that given for Conjecture 7.
	Conjecture 9. If G is a simple connected graph, then the average eccentricity of G is not more than the independence number of G plus the average distance of G.
	Conjecture 10. If G is a simple connected graph, then the average distance of G is not more than the radius of G plus the minimum degree of G.
	Shortly after the list was sent to the group, Bill Waller found a counterexample to Conjecture 10.
	Conjecture 11. If G is a simple connected graph, then the average distance of G is not more than the path covering number of G plus the radius of G.
	Conjecture 12. If G is a simple connected graph, then the minimum degree of G is not more than the number of boundary vertices of G plus the number of center vertices of G.
	A couple of days after it was announced, Bill Waller and the author found a counterexample to Conjecture 12.
	Deﬁnition 3.4. Let S be a subset of the vertices of a graph G. Then the neighborhood of S, denoted N(S), is the subset of vertices of G that are adjacent to at least one vertex of S.
	-

	Conjecture 13. Let G be a simple connected graph. Let M be the subset of vertices of G that have maximum degree, and let A be the subset of vertices of G that have minimum degree. Then the cardinality of N(A) is not more than the bipartite number of G plus the cardinality of N(M).
	3.6. Demonstration of Beagle. One of the commands that implement the beagle heuristic is called dirn. The command dirn proceeds similarly to the irin command except that the user is prompted for a distance (which is de.ned in Section 2.3). As described in Section 2.3 the convention for naming invariants a ects the implementation of beagle, which utilizes the idea that conjectures involving concepts of a
	-

	The subject title was A Blast from the Past.
	7

	Figure
	Figure 11. Demonstration of the dirn command, which implements the beagle heuristic.
	Figure 11. Demonstration of the dirn command, which implements the beagle heuristic.
	-

	di.erent type are more likely to be interesting. Since the beagle heuristic is no longer used in the Graﬃti-System, the convention for naming invariants has changed. That is, Algernon no longer adheres to the convention, nor does the generator of the database (as mentioned in Section 3.1). For the demonstration, the two counterexamples were added to the database used in the previous demonstration (without sums of invariants), and the names of the 19 invariants were changedusing a text editor.
	Graﬃti.pc
	8

	Once the input was available, Graﬃti was executed, dirn was entered as the command, and the collection of graphs for the property was selected as \simple connected graphs". The author experimented with various values for the minimum distance between invariants, with the following outcomes. With minimum distance of 2, the beagle heuristic did not eliminate any of the 23 conjectures made by irin; with minimum distance of 3, the beagle heuristic accepted only 19 of the 23 conjectures made by irin; with minimum
	During the experiment, the author wondered if among the 10 conjectures (seen in Figure 12) accepted with minimum distance set to 5, one would .nd the six conjectures discussed in Section 3.4. It was the case that four of the six conjectures were reproduced by dirn with minimum distance set to 5. The two not present were diameter of the graph . bipartite number of the graph, since according to the invariant naming convention of the 1980s version, the invariants (maximum;eccentricty;graph and order;bipartite
	-
	-
	-

	For example, the min degree of graph was changed to min; degree sequence; graph.
	8

	Figure
	Figure
	Figure 12. Conjectures of the dirn command, which implements the beagle heuristic.
	Figure 12. Conjectures of the dirn command, which implements the beagle heuristic.

	3.7. First Demonstration of echo . The echo heuristic will be demonstrated in the next 3 sections. The .rst demonstration utilizes the same database as before, except that invariant names will follow the naming convention used in the 1990s. In the next two demonstrations, we expand the database to include more invariants, and illustrate two iterations of nding counterexamples and re-executing the program before listing conjectures.
	-

	The heuristic echo can be launched by itself or in combination with other heuristics. Our .rst demonstration will be of the command erie, which launches the irin heuristic followed by the echo heuristic. For this demonstration, as described above we utilize the same database as in the previous demonstration. The property of \triangle-free graphs" was selected as before. The program reported that 63 relations were correct (with respect to the database) for the graphs in the property selected and proceeded to
	-
	-
	-

	Deﬁnition 3.5. Let G be a simple graph. The local independence of a vertex of G is the independence number of the subgraph induced by the neighbors of the vertex, and maximum of local independence of G is the maximum of local independence numbers over all vertices of the graph.
	Conjecture 14. If G is a connected triangle-free graph, then the maximum degree of G is not less than the maximum of local independence of G.
	Equality of the two invariants (occurring in Conjecture 14) is trivially true for triangle-free graphs. However, this illustrates the main idea of the heuristic echo, since it is not true for all simple connected graphs. The other two reported relations were both false (and resolved by the author).
	3.8. Another Demonstration of echo . For the second demonstration of erie, which implements echo, a counterexample to the previous two false conjectures was added to the database, and the number of invariants increased to 128 (although, Fajtlowicz reports using fewer than this amount). The set of invariants included
	3.8. Another Demonstration of echo . For the second demonstration of erie, which implements echo, a counterexample to the previous two false conjectures was added to the database, and the number of invariants increased to 128 (although, Fajtlowicz reports using fewer than this amount). The set of invariants included
	at least 8 that were computationally di.cult, the others were degree and distance related. Note, the expanded database was used for the remainder of the demonstrations in this paper. Before invoking any conjecture-making commands, the modi command was utilized with option 19 selected, which deletes redundant equalities (as described in the menu of Figure 9). Option 19 prompts the user for a property. For this demonstration the property of \triangle-free graphs" was selected. The program reported 12 equaliti
	-
	-
	-

	Figure
	Figure 13. Conjectures of erie with expanded database.
	Figure 13. Conjectures of erie with expanded database.

	Once the database was expanded, the erie command was launched, the property was selected as \triangle-free graphs" and the background was selected as \simple connected graphs". The program reported that 1670 inequalities were generated by ineq for the selected property, and that 359 of those remained after irin was utilized. Finally, after the heuristic echo was utilized the number of accepted conjectures was
	132. In Figure 13, we see that as Fajtlowicz described in [26] the program produces groups of conjectures. Since many of the conjectures on the rst part of this list are false, the demonstration will include one iteration of the process (described in Section 3.2) of providing counterexamples and re-executing the program.
	After considering some of the rst 30 conjectures, the author found nine counterexamplesto refute at least 13 conjectures. All refuted conjectures related degree invariants to distance invariants. Three of the counterexamples were small graphs on 6 or 7 vertices, and the others were on between 13 to 30 vertices. After adding the counterexamples to the database and re-executing, the program indicated that 1574 inequalities had been generated by ineq for the graphs of the property,and
	-
	9

	We note that after the demonstration was described, Fajtlowicz commented to the author that he would have re-execute the program well before .nding 9 counterexamples.
	9

	Figure
	Figure 14. Conjectures of erie after one iteration of counterexamples and re-execution of the program.
	Figure 14. Conjectures of erie after one iteration of counterexamples and re-execution of the program.
	-

	that after applying irin 342 remained. Once the heuristic echo was applied, the number of accepted conjectures was 94. The decrease in the number of conjectures is probably due to the observation that erie generates groups of similar conjectures. (That is, some of the graphs added to the database were probably counterexamples to similar types of conjectures).
	After glancing at some of these 94 conjectures, the author was convinced that many of them were false. Thus, in the next section we demonstrate another iteration of the process of nding counterexamples and re-executing the program; and we also take this opportunity to discuss the idea of the touch number and to demonstrate the use of a program to test for counterexamples. Introduction and demonstration of the touch number at this juncture is intended to serve a two-fold purpose. This idea will recur in the
	-

	3.9. Atypical-Demonstrations of the 1980s Version. We previously noted that the demonstrations were not duplications of any of Fajtlowicz's previous runs of this version of Graﬃti; the following demonstrations diverge even more from \typical" runs of the 1980s. At this point, we will continue with the expanded database and the counterexamples found; however, we .rst discuss the command prox, which is not described in either the help menu or Fajtlowicz's papers of this version, but was encountered as the aut
	3.9. Atypical-Demonstrations of the 1980s Version. We previously noted that the demonstrations were not duplications of any of Fajtlowicz's previous runs of this version of Graﬃti; the following demonstrations diverge even more from \typical" runs of the 1980s. At this point, we will continue with the expanded database and the counterexamples found; however, we .rst discuss the command prox, which is not described in either the help menu or Fajtlowicz's papers of this version, but was encountered as the aut
	equality. The code of Graﬃti indicates that the prox command launches the command ineq for a user selected property, prompts for a \proxy value" (i.e. minimum touch number) and proceeds to report which relations have a touch number of at least the \proxy value".
	-

	For this demonstration (in an e.ort to continue with the line of thought in the previous demonstration), the author added a new command called erpx, which is a combination of erie and prox. The new command erpx performs exactly as erie, but .rst prompts the user for a minimum touch number.
	Once the command erpx was entered, the minimum touch was set to 9, the property of \triangle-free graphs" was selected, and the background was selected to be \simple connected graphs". As before, the program reported that 1574 inequalities were made by ineq for the property, 342 remained after applying irin, and 94 remained after the heuristic echo was applied; and .nally, 61 relations satis.ed the condition of minimum touch at least nine. Note that using the ftch command, the author had previously determin
	-
	-
	10

	The list of 61 conjectures, described by their numerical invariant identi.ers, was input to Builddbs, a subprogram (described in [13]) of , for which code was rearranged to test the 61 conjectures on about 22,500 small connected triangle-free graphs; the number of vertices ranged between 1 and 16. The adjacency lists of the graphs were retrieved from The Combinatorial Object Server's web interface for Brendan McKay's makeg. We note that this is not the .rst time that conjectures of this version of Graﬃti we
	Graﬃti.pc

	Of the 61 conjectures tested by Builddbs, 42 were refuted by 25 examples of small triangle-free graphs on fewer than 11 vertices. We will present 9 of the remaining conjectures but .rst provide some relevant de.nitions common to many of the statements and note that the remaining de.nitions were provided previously or will precede the conjecture in which they appear.
	Deﬁnition 3.6. Let G be a connected graph. Let D be the degree sequence of G. The mode of D is the value of the sequence that occurs most frequently, and the frequency of a modal degree is the number of times a mode occurs in D.We call the minimode of D the value of the sequence that occurs least frequently, and the frequency of a minimodal degree is the number of times a minimode occurs in D.
	Of the remaining 19 conjectures, 2 were easily proven (related to maximum degree and independence), 8 were trivially true, and .nally the remaining 9 are listed next.
	Fajtlowicz did experiment with a program .nding counterexamples; we discuss this in Section 5.1.
	10

	Figure
	Figure 15. Conjectures of erpx.
	Figure 15. Conjectures of erpx.

	Conjecture 15. [31, Conjecture labeled Gra.ti 112] If G is a connected triangle-free graph, then the radius of G is not more than the frequency of a modal degree of G.
	Conjecture 15 was disproved for triangle-free graphs by Shui-Tain Chen in April of 1988, and later she proved that the relation holds for trees.
	Conjecture 16. If G is a connected triangle-free graph, then the frequency of a minimodal degree of G is not more than the 2nd smallest value in the set of degrees of the complement of G.
	Deﬁnition 3.7. The closed neighborhood of a subset S of vertices of G, denoted by N[S], is de.ned to be the union of N(S) (de.ned in De.nition 3.4) and S.
	Conjecture 17. Let G be a connected triangle-free graph. Let Mbe the subset of vertices of G that have maximum degree in the complement of G. Then the 2nd smallest value in the set of degrees of G is not more than the cardinality of N(M).
	.
	.

	Conjecture 18. Let G be a connected triangle-free graph. Let Mbe the subset of vertices of G that have maximum degree in the complement of G. Then the maximum of even degrees of G is not more than the cardinality of N(M).
	.
	.

	Conjecture 19. Let G be a connected triangle-free graph. Let A be the subset of vertices of G that have minimum degree in G and let Mbe the subset of vertices of G that have maximum degree in the complement of G. Then the cardinality of N(A) is not more than the cardinality of N[M].
	.
	.

	Deﬁnition 3.8. Let G be a connected graph, and let S be a subset of the vertices of G.The eccentricity of S is the maximum of eccentricities of the vertices of S. (The eccentricity of a vertex was given in De.nition 3.1.)
	Conjecture 20. If G is a connected triangle-free graph, then the eccentricity of the set of boundary vertices of G is not more than the 2nd smallest value in the sequence of degrees of the complement of G.
	Conjecture 21. If G is a connected triangle-free graph, then the average distance between (distinct) center vertices of G is not more than the 2nd largest value in the set of degrees of the complement of G.
	Deﬁnition 3.9. Let G be a connected graph. The length of a longest induced cycle is called the induced circumference of G. Note that in the case that G is a tree, the induced circumference is considered by the program to be unde.ned (and thus trees are not considered to be counterexamples).
	Conjecture 22. Let G be a connected triangle-free graph. Let us denote the maximum degree of the complement of G by ..If .is at least two, then n mod .is not more than the induced circumference of G.
	-
	.
	.
	.

	Deﬁnition 3.10. Let G be a connected graph. Let D be the degree sequence of G listed in non-increasing order. Let . be the .rst term of the sequence. A derived sequence is obtained from D by deleting the largest element . and subtracting one from its . next largest elements; we will call this operation L.It is known that a sequence is realized by a graph if and only if the derived sequence is realized by a graph ([43] and [46]); thus, repeated iterations (including sorting of the derived sequences) of the o
	Conjecture 23. If G is a connected triangle-free graph, then the number of even degrees in the set of degrees of the complement of G is not more than the residue of G.
	4. The Early 1990s
	In the 1989-1990 academic year, Fajtlowicz recruited graduate students to join this project as he had been awarded an In the almost three years of support, the team was composed at di erent times of a subset of William Curry, Ermelinda DeLaVina, Siemion Fajtlowicz, Michael Granado, Kathryn Johnson and Timor Sever. First, Fajtlowicz recruited Johnson (a computer science student) to write the code for what would be called a master le,which was an e ort to organize and maintain a database of Graﬃti’s conjectur
	Advanced Research Project grant.
	11
	12

	.rst person to contribute any code to Graﬃti aside from Fajtlowicz. Further, we note that similar descriptors for conjectures were provided for in the later version; option 14 of the term menu (Figure 17) provides the ability to switch the proven status of conjectures.
	In the next subsection, we describe the elementary geometry version of Algernon developed by the team of DeLaVina, Fajtlowicz, Granado and Sever. The intermediate versions of Graﬃti that followed the 1980s version but preceded the Dalmatian version, which are discussed in Subsections 4.2 through 4.4 were developed by DeLaVina and Fajtlowicz (often in a joint e ort).
	-
	-

	0033652085-ARP. This is related to the query in Figure 7.
	11
	12

	4.1. Elementary Geometry. In the middle of the spring of 1990, a main task of the team of DeLaVina, Fajtlowicz and Sever, was to write code for the subprogram Algernon. Speci cally, the goal was to create a library module and a data module in Algernon, which would generate the 2-dimensional database of elementary geometry models (polygons) and invariants for input to Graﬃti (see Figure 2 for the program structure). Although Granado joined the project later in the year, he also contributed to the elementary
	-

	Up to that point Graﬃti had generated mathematical conjectures mainly in graph theory and some in number theory (for the latter, see conjectures numbered 434-470 and 495-536 in [31]). Since the conjecture-generating part of Graﬃti only \knows" the values of the invariants, (and therefore does not depend on the \type" of model about which conjectures are made), Fajtlowicz's goal to test his contention, that Graﬃti is domain independent, seemed practical. By the summer of 1990, some geometry input was availab
	In addition to Algernon’s new code, there were other geometry related tasks pursued. For example, the team focused for a while on triangulations of simple curves and during this time Curry (with some collaboration with Granado) wrote a Voronoi diagram viewing program. The pictures were impressive, but, unfortunately the code for the viewer was not ported to other platforms. The development of the elementary geometry databases continued through early 1991,which coincided with new versions of the conjecture-m
	-
	13
	-

	4.2. Forever. In 1990, Fajtlowicz began planning and later coding his ideas for enhancing the algebraic form of Graﬃti’s conjectures. Conjectures would be inequalities between terms of an arbitrary real-based algebra. The change in the form of conjectures marked the beginning of a fundamental change in the way that the program would be developed. Obviously, the program could no longer begin by determining all correct relations relative to the database. The rst application of the new capability of generating
	-
	14
	-
	-

	Given the recent successes of the educational applications of Graﬃti we are more tempted to return to the geometry version.
	13

	The use of the words property and background (in Gra.ti) was given on p. 5 of this paper.
	14

	Figure
	Figure 16. A sample of the form of conjectures of Forever.
	Figure 16. A sample of the form of conjectures of Forever.

	Conjecture (Forever). Let G be a simple graph. The minimum degree of G is not more than twice its matching number.
	15

	4.3. Demonstration of Forever. The same database, as in the previous demonstration (in Section 3.9), was used as input for a demonstration of the execution of Forever. Again, triangle-free graphs were selected as the property and simple connected graphs as the background. The program's execution was terminated (by the author) after about an hour; in that time it had generated 374 conjectures. The screen capture in Figure 16 (which is about the midpoint of the list) indicates that 95 conjectures involving th
	-

	.rst three conjectures (seen in Figure 16) are false, and that the second is trivially true for triangle-free graphs. As mentioned previously, the implementation of Forever was short lived, but in the development of Graﬃti it serves as a transitional moment in time from the old to the new.
	-

	4.4. Whatever. Later in 1990, Fajtlowicz had ideas for a procedure that would generate its own properties and make conjectures on the properties that it discovered. Of course, the Echo heuristic would be used. Thus, if the program made its own properties, then it should also decide on respective appropriate backgrounds. These ideas materialized as the procedure called Whatever. The planning of Whatever set the stage for many discussions on what made a property interesting.
	-
	-

	In practice, Whatever de.nes new properties based on the inequalities encountered during the generation of terms. A relation between a pair of terms is considered a candidate property if it satis.es equality on a certain speci.ed percentage of the models available in the database. However, since the program maintains a list of its discovered properties (and their respective backgrounds), it accepts a new candidate property only if it is not equivalent to any of the previously discovered property is accepted
	-
	-
	properties.If the
	-

	The matching number of a graph is the cardinality of a largest set of edges of the graph such that no two edges have a vertex in common.
	15

	Figure
	Figure 17. The term menu.
	Figure 17. The term menu.

	16
	assigning backgrounds. During this process, the program also generates conditional conjectures for the discovered properties, using a procedure very similar to the one implemented in Forever.
	-

	After the development of Whatever,the properties generated by Whatever were also made available for use with the 1980s heuristics. This is seen in the property selection menu (Figure 5) of the 1980s version of Graﬃti. Speci.cally, options 11 and 12 of the property selection menu allow a user to select program-generated properties for use with the heuristics of the 1980s version.
	Although no conjecture of Whatever is listed in [31], this version of Graﬃti is mentioned twice, once in [31] and another in [30]. In the .rst, Fajtlowicz included a comment above conjecture 733 in Written on the Wall, \Actually the new version of Gra.ti de.nes properties to make conditional conjectures. In the past to get conditional conjectures, properties had to be de.ned by a user." And in [30] he wrote, \...the current version can de.ne its own properties. One of the properties discovered by Gra.ti is
	-

	Conjecture (Whatever). If G is a bipartite graph, then the minimum degree of G is not more than its matching number.
	17

	Whatever made even more conjectures compared to Forever. Thus, utilization of this version was also short lived as Fajtlowicz had other ideas,which we soon pursued. However, during this time, there were several technical user-oriented enhancements.
	18

	If memory serves, we ended up favoring tight backgrounds, that is, the smallest background possible. Although, the code of Whatever does not refect this, it was evident in a procedure called Arbolito, which was a procedure in which the ideas of Dalmatian and Whatever were simultaneously implemented.
	16

	A bipartite graph is a graph whose vertices can be partitioned into two disjoint independent sets.
	17

	Upon reviewing the code, a list of problems and possible improvements noted by Fajtlowicz, served as reminders.
	18

	Since neither of Forever nor Whatever had halting conditions (as suggested by their names), it quickly became obvious that we would need a method for interrupting the program and later resuming the program. Further, since the data structures for conjectures were signi.cantly di. erent (than those of the 1980s version), a ftchlike feature, which we named term, was needed. The term option allows for viewing the list of properties discovered by the program, viewing the list of conjectures for a selected proper
	-
	-

	Although the code for Whatever still exists,it is not presently executable. Thus, a demonstration in this paper for Whatever is not presented.
	19

	5. The Dalmatian Heuristic
	As 1991 approached, Fajtlowicz proposed a di erent strategy for generating conjectures. The di erences would be major. Firstly, the approach (as compared to previous versions) would be completely reversed (see Figure 18). In this version, the
	-

	rst heuristic applied by the program would now test for informativeness of each conjecture, and correctness would become the second consideration. In Fajtlowicz's On Conjectures of Graﬃti V [30] appeared the .rst description of Dalmatian, which we reproduce below.
	-

	\The program keeps track of conjectures made in the past and when it runs across a new candidate for a conjecture then rst of all it veri.es if there is an example (in the database) demonstrating that the conjecture does not follow from the previous conjectures. If there is no such example then the conjecture is rejected as non-informative. If there is one, then the program proceeds with testing the correctness of the conjecture, and .nally it veri.es whether the conjecture should be rejected by one of its
	-
	-

	Another major di erence (not described above) was that the new approach would be driven by a larger goal. Speci cally, the larger objective (as opposed to simply
	.nding single relations) is to characterize a ﬁxed termin terms of algebraic expressions involving the other invariants. That is, Dalmatian searches for a system of inequalities such that each inequality bounds a ﬁxed term. In practice, Dalmatian stops if and only if for every model G in the database there exists a conjecture on the list whose touch numberwas contributed to by the model. Thus, in addition to providing a list of conjectured bounds, say for example that x(G) . c(G), x(G) . c(G),..., x(G) . ck
	20
	-
	-
	21
	-
	1
	2

	This code is still in existence, however, the program's code as undergone multiple changes as it had to be adapted to di .erent compilers over the years.
	19

	In Section 4.2, we described that the stream of algebraic combinations of invariants would be referred to as a ﬁxed term we mean an algebraic combination of invariant(s) (selected by a user) that is to remain unchanged (for the duration of an execution).
	20
	terms.By

	This was de.ned in Section 3.9 as the number of models in the database for which the relation is equality.
	21

	Figure
	Figure 18. Dalmatian overview.
	Figure 18. Dalmatian overview.

	For every model G satisfying property P ,
	x(G)= maximum of fc(G), c(G),..., ck(G)g.
	1
	2

	In practice, the program generates one stream of terms (compared to two streams generated in Forever). For each instance of the stream of terms, the program rst tests for \Dalmatian improvement" (see Figure 18); this is a test for determining if for at least one model (in the database) the candidate conjecture provides a closer bound (compared to previously accepted conjectures) for the ﬁxed term selected by the user.If an improvement has been found, only then is the candidate conjecture tested for correctn
	22
	-
	-

	23
	tures, called tree. If a newly accepted conjecture provides a closer bound (for all models in the database) compared to any combination of the previously accepted conjectures in tree, then a revision of the list may mean that some conjectures are moved to the program's list of superceded conjectures, called mute. Once the list tree has been revised, the program checks if the halting condition described above is satis.ed. In the program and in the diagram of Figure 18, the halting condition is called Bingo.
	Most often a term equivalent to an invariant is xed; Minuteman conjectures [32], and the educational applications [6] and [54] are exceptions.
	22

	The accepted conjectures and removed conjectures are stored in separate structures and periodically stored to les called tree.dat and mute.dat, respectively; references to the les are seen in Figure 17.
	23

	Figure
	Figure 19. The original Autograph.
	Figure 19. The original Autograph.

	and for each of these it reports two numerical measures (computed with respect to the database), the touch number and the average ratio.
	24

	With the exception of the heuristic echo, which can be implemented by Dalmatian in the testing for Dalmatian improvement and plausibility, none of the other heuristics of the 1980s version are utilized by Dalmatian.That irin is not necessary is obvious, and instances for which cncl and beagle might still be useful are rare in the author's experience.
	-

	Before presenting a demonstration of the Dalmatian heuristic, we discuss two other developments that took place at about the same time, both of which relate to expanding the number of models accessible to the program.
	5.1. Autograph and Multiple Databases. In this section, we described two early experiments of graph generation, a later development of a method for utilizing more graphs in Graﬃti, and an experiment associated with these developments. In his 1989 paper, On Conjectures and Methods of Graﬃti [28], Fajtlowicz mentioned a procedure called Autograph; speci.cally, he wrote \Autograph is a recent addition, searching for counterexamples to false conjectures." The input for this procedure could be prepared by select
	-
	-
	25
	-

	The average ratio is an approximate probabilistic measure of how close the values are on the left and right side of the inequality.
	24

	As described in Section 2.2 On the Code of Algernon, currently the program has procedures for inputting graphs in many forms, such as those of the programs of McKay, Brinkmann and Skiena.
	25

	In early 1991, Fajtlowicz suggested pursuing generation of graphs. A procedure named Autograph was designed, which generated graphs by applying graph operations (such as the complement or join) to a set of simple graphs. The names of derived graphs were expressed in polish notation. The generation of isomorphic graphs was, of course, a major concern. The procedure was designed to check for certain obvious redundant combinations, such as, the complement of the complement of a given graph, such combinations w
	-
	-
	26
	-

	This development coincided with the development of the Graﬃti-System’s utilization of multiple databases. As previously described, the programs at this time were running on the VMS/VAX Station called Charly, and extending the data structure (of the database) to accommodate more models was not possible, and thus one of the author's tasks (at around this time) was to adapt Graﬃti and Algernon to utilize and generate (respectively) multiple databases.
	-

	The graph generating procedure Autograph was adapted to create multiple databases without interrupting its execution. For the 1980s version of Graﬃti, before the user is prompted for a command there is a prompt \which dbs?", which allows a user to select the database to be used the session. For the Dalmatian version, one database is designated the \top" database on which the \Dalmatian improvement" is to be tested, and all other databases are utilized in the plausibility phase of the Dalmatian heuristic.
	-

	At about the same time the development of the procedure Autograph took place, Fajtlowicz proposed a project to analyze graphs available in the library modules of Algernon. One of the questions of interest, was how often any given graph served as a counterexample in runs of Graﬃti. The interest in this was, perhaps in part, due to the issue of limited computer memory resources, but we also wanted to compare conjectures based on the Autograph database with conjectures generated by the program when using its d
	Another experiment with the Autograph procedure involved computing invariants recursively for graphs constructed through operations. Inspection of the code refects that the values of many simple invariants were determined for some operators. The author's notes indicate that a lot of time was spent considering possible algorithms, but the experiment was prematurely discontinued.
	-
	-
	27

	The complement of the complement of a graph is isomorphic to the graph.
	26

	As this occurred during the spring of 1991, there were other developments in progress and of course nal exams.
	27

	Figure
	Figure 20. : Dalmatian.
	Figure 20. : Dalmatian.
	Graﬃti.pc

	5.2. Demonstration of the Dalmatian Heuristic. In 2000-2001, the author developed the program . A long-term goal for its development was to have a program similar to Graﬃti on a PC platform. A short-term goal for the initial version of was to develop a program that could be used for undergraduate research; see [13] and [6] for the educational application. is a system of three programs, two of which are C++ programs Builddbs (analogous to Algernon) and Dalmatians; and the third component is a Visual Basic us
	Graﬃti.pc
	Graﬃti.pc
	Graﬃti.pc

	Some comparison of the two systems was rst given in [13]. At this point, we discuss only the implementation of the Dalmatian heuristic, and note the following di.erences. There are three di.erences in the implementation of the Dalmatian heuristic. Two of the di.erences are incidental in the sense that they do not directly a. ect accepted conjectures (i.e. those that would appear in Graﬃti’s list called tree). In Figure 20, the intermediate step \irin: transitivity" is used only for separately reporting inst
	Graﬃti.pc
	28

	For the demonstration of the Dalmatian heuristic, the ﬁxed term selected was the bipartite number. The choice of this term was motivated by Bill Waller's
	An example of a superceded conjecture is presented in the demonstration.
	28

	interest in Graﬃti’s conjecture number 747 in [31], which states that For G a simple connected graph, the average distance of G is not more than half the order of a bipartite subgraph. The other parameter settings for were as follows.
	Graﬃti.pc

	. The property was selected as \simple connected graphs". . The relation was set to greater than or equal. . The operators used to generate terms included the 9 unary operators a half,
	a third, square root, multiplicative inverse, additive inverse, the foor, the ceiling, and plus or minus one; and the 3 binary operators addition, multiplication, and one operand applied as an exponent to another operand.
	-

	. The minimum touch number was set to ten.
	. The \top" database was composed of most of the 128 invariants utilized in the previous demonstrations in this paper, and of about 200 graphs similar to those present in the previous demonstrations (in this paper).
	. One parameter, not currently accessible through the interface,is for the utilization of multiple databases for the plausibility test of Dalmatians.For this demonstration, about 40,000 small graphs (most acquired from the Combinatorial Object Server's web interface for Brendan McKay's makeg)located in the multiple databasesof were used.
	29
	-
	30
	Graﬃti.pc

	Although, the halting condition Bingo had not been satis.ed (there were about 60 graphs in the \top" database for which no conjecture on the list predicted their bipartite number), the author forwarded the following list of 18 conjectures to the mailing list mentioned in Section 3.5. Among the 18 conjectures, 16 were the conjectures accepted by Dalmatians, one was an incidental conjecture reported in the \irin: transitivity" step, and another was a superceded conjecture which was forwarded to the mailing li
	31
	32

	Notation 5.1. Let G be a simple connected graph. We will let b(G)denote the bipartite number of G (De.nition 3.3), diam(G) will denote the diameter of G, rad(G) will denote the radius of G, ecc(G) will denote the average eccentricity of G (De.nition 3.1), and λ(G) will denote the maximum of local independence of G (De.nition 3.5).
	Conjecture 24. Let G be a simple connected graph. Then b(G) . diam(G)+ λ(G) − 1. Conjecture 25. Let G be a simple connected graph. Let fG(1) denote the frequency of degree one in the degree sequence of G. Then b(G) . diam(G)+ fG(1) − 1. Conjectures 24 and 25 were proven by Waller and the author [17].
	Conjecture 26. Let G be a simple connected graph. Then b(G) . 2 . rad(G).
	The author set the parameter in a le. The use of multiple databases in is similar that described in Section 5.1. This list is now part of the list Written on the Wall II, available at
	29
	30
	Graﬃti.pc
	31

	/ see [12]. It ran for about 70 hours for bipartite number. A session for path number was initiated.
	http://cms.dt.uh.edu/faculty/delavinae/research/wowII
	32

	Conjecture 26 was proven by Fajtlowicz in [34]; an alternate proof was given by Waller [17].
	Conjecture 27. Let G be a simple connected graph. Then b(G) .2 .(rad(G) −1) + λ(G).
	Conjecture 27 is a superceded conjecture (removed, from the list of accepted conjectures, during the update phase described previously) included at Waller's request; he communicated a proof for b(G) .2 .rad(G)+ λ(G)-5 (see [17]).
	Notation 5.2. Let G be a simple graph. We let α(G) denote the independence number of G.
	Conjecture 28. Let G be a simple connected graph. Then
	diam(G)
	b(G) .α(G)+ de.
	3
	Conjecture 29. Let G be a simple connected graph. Let M be the vertices of maximum degree of G,and let dmax(M) be the maximum distance between vertices of the set M. Then
	p
	b(G) .α(G)+ d e.
	dmax(M)

	Conjecture 30. Let G be a simple connected graph. Then b(G) .becc(G)+ λ(G)c.
	Conjecture 31. Let G be a simple connected n-vertex graph, and let deg(G)denote theaverage degreeof G. Then
	n
	b(G) . .
	bdeg(G)c
	Conjecture 32. Let G be a simple connected graph. Let B be the set of boundary vertices of G, and let d(B,V) denote the average of all nonzero distances between vertices of B to vertices of the graph. Then
	b(G) .d2 .d(B, V)e.
	Conjecture 33. Let G be a simple connected graph. Let d(V) denote the average of all nonzero distances between vertices of the graph G.Let B be the set of boundary vertices of G, d(B, V) will denote the average of all nonzero distances between vertices of B to vertices of the graph. Then
	d2 .d(B, V)e.d2 .d(V)e.
	Conjecture 33 did not appear on the list of Dalmatians accepted conjectures; it is a product of the \irin: transitivity" step as described previously. Shortly after the list of conjectures was forwarded to the email list, Bill Waller and the author found a counterexample to Conjecture 33. (It is described in [17].)
	Conjecture 34. Let G be a simple connected graph. Let M be the vertices of maximum degree of G,and let d(M, V) denote the average of all nonzero distances between vertices of M to vertices of the graph. Then
	d(M,V)
	d(M,V)
	b(G) .bα(G)+

	c.
	2
	Conjecture 35. Let G be a simple connected graph. Let de(v) denote the number of vertices at an even distance from vertex v.Let de(G) denote the minimum of fde(v)jv 2V (G)g. Then
	de(G)
	b(G) .λ(G)+ de
	b(G) .λ(G)+ de

	3
	Figure
	Conjecture 36. Let G be a simple connected graph. Let de(v) denote the number of vertices at an even distance from vertex v.Let de(G) denote the minimum of fde(v)jv 2V (G)g. Then
	b(G) .2 .d(1 + de(G))e
	1

	3
	Conjecture 37. Let G be a simple connected graph. Let dd(G) denote the number of distinct degrees of the degree sequence of G. Then
	p
	() .d1+ e
	b
	G
	4
	dd(G)

	Conjecture 38. Let G be a simple connected graph. Let s denote the minimum of fjN(fu, vg)j: for fu, vg an edge of Gg.Let t(G) denote the number of subgraphs of G isomorphic to a complete graph on 3 vertices. Then
	b(G) .s.
	1
	−t(G)

	Ryan Pepper communicated a proof of Conjecture 38 to the author.
	Notation 5.3. Let G be a simple connected graph on vertex set V . Let S be a subset of the vertices of G. The minimum distance between distinct vertices of S will be denoted by dmin(S). The maximum distance between vertices of S will be denoted by dmax(S).
	Conjecture 39. Let G be a simple connected graph. Let A be the subset of vertices of G that have minimum degree in G.Let M be the subset of vertices of G that have maximum degree in G. Then
	p
	b(G) .dmin(A)+
	4
	dmin(M)

	Conjecture 40. Let G be a simple connected n-vertex graph. Let A be the subset of vertices of G that have minimum degree in G.Let .(G) denote the maximum degree of the complement of G.If n mod .(G) > 0,then
	c
	c

	1
	b(G) .dmax(A)+ .
	n mod Δ(Gc)
	Conjecture 41. Let G be a simple connected graph. Let A be the subset of vertices of G that have minimum degree in G.Let E(M) be the set of edges of the complement of G induced by vertices of maximum degree in the complement of G. Then
	-
	c

	p
	b(G) .dmin(A)+ .
	4
	jE(M
	c
)j

	6. Closing Comments
	Once the demonstrations of the 1980s version executions were described for this paper, Fajtlowicz communicated to the author one main di.erence not discussed in the text. Speci.cally, he noted that he was usually adding counterexamples one at a time (unlike the demonstrations of Sections 3.8 and 3.9) and then re-executing the program. He further noted that one can learn much by adding one counterexample at a time.After experiencing the compilation of demonstrations of the heuristics of the 1980s version, th
	33

	This seems to have inspired the Little Red Riding Hood style for implementing the program as described in [35].
	33

	Since Graﬃti’s inception almost 20 years ago, in addition to the many mathematical research papers inspired by conjectures of Graﬃti, the program has been discussed and compared in a variety of other papers. In 1989, an article in The New York Times [48] discussed Graﬃti and its novelty as a conjecture-generating program. In the same year an inset to an article on automated theorem proving appeared in Science [8] and in 1993 an article discussing Graﬃti appeared in Scientiﬁc American [47]. Over the years as
	-
	-

	. Pat Langley's 1998 article, The Computer-Aided Discovery of Scientiﬁc Knowledge [49], . Raul E. Valdes-Perez's 1998 article, Why Some Machines do Science Well [57],
	-

	. Herbert Stoyan and Michael M¨ueller's 1999 article, For the Creative, Knowledge-based Discovery of Interesting Mathematical Concepts with Methods of Artiﬁcial Intelligence [56] (Dutch),
	-

	. Simon Colton's 2000 article, On The Notion Of Interestingness In Automated Mathematical Discovery [9], . Pierre Hansen and Hadrien M.elot's 2002 article, Computers and Discovery in Algebraic Graph Theory [44] and . Pierre Hansen's 2002 article, Computer’s in Graph Theory [45].
	In addition to Fajtlowicz's 1995 introductory description of the Dalmatian version, On conjectures of Graﬃti V, other published papers that include discussion and comparison of the Dalmatian version of Graﬃti include the author's 2002 article, [13] and Craig Larson's 2002 article, Intelligent Machinery and Mathematical Discovery [50].
	-
	-
	Graﬃti.pc

	As previously noted, the conjectures of Graﬃti have inspired (to the present) many papers by many well known researchers; for a list of bibliographical information on papers on conjectures of Graﬃti see [10]; for a list of many of Graﬃti’s conjectures with some comments of Fajtlowicz see [31]. At this point, a majority of these papers are on conjectures of the 1980s version of Graﬃti. Thus in closing, we provide a topical summary of the applications of the 1990s version of Graﬃti with relevant conjectures,
	-

	. Independence number, chromatic number, length of a longest path and a chip-.ring game (see conjectures numbered 747-757 in [31]) . The jet number of a graph (see conjectures numbered 778-782 in [31], also [14], [15], and [18]) . Number theory (see conjectures numbered 783-785 and 800-813 in [31]) . Ramsey r(3,a)-critical graphs (see conjectures 786-791 in [31]) . DNA sequences (see conjecture 798 and related comments in [31]) . Invariant interpolation problems (see conjectures 814-821 [31], also [38]) . k
	. Chemistry (fullerenes) (see conjectures 840-862 in [31] and conjectures 895913 in [32], also [37], [39] and [41]) . Triangle-free ramseyan properties (see conjectures 862-894 in [31], also [2], [3], [15] and [20]) . Chemistry (benzenoids) (see conjectures 914-1005 in [33])
	-

	The following applications of Graﬃti are listed separately as the do not appear in [31], [32] or [33]. . Maximum number of leaves of a spanning tree (see conjectures 1-7 in [11], also [12]) . Independence number (see [11] and [16]) . Educational (see [6], [13],[35] and [54])
	Acknowledgements. The author wishes to thank Inga Matthews for her interest in the project and the many suggestions, which helped improve this paper. A note of gratitude is extended to Siemion Fajtlowicz for allowing the author access to all current and old code of the two versions of Graﬃti. In addition, a note of thanks is extended to the anonymous referees of this paper for their helpful suggestions.
	References
	[1] T. Brewster, M. Dineen and V. Faber, Computational attack on conjectures of Gra.ti: new counterexamples and proofs, Discrete Math. 147 (1995), 1-3.
	[2] B. Bollob.as and O. M. Riordan, On some conjectures of Gra.ti, Discrete Math. 179 (1998), 223-230.
	[3] B. Bollob.as and O. M. Riordan, Colourings generated by monotone properties, Random Structures Algorithms 12 (1998), 1-25.
	-

	[4] G. Brinkmann, CaGe, available at .
	www.mathematik.uni-bielefeld.de/~CaGe/fullerenes.html

	[5] S. Chen, On selected conjectures of Gra.ti, Ph.D. thesis, University of Houston, (1990).
	[6] B. Chervenka, Graph theory style, Senior Project Report, University of Houston-Downtown, (2001).
	Gra.ti/Gra.ti.pc

	[7] F. Chung, The average distance is not more than the independence number, J. Graph Theory 12 (1988), 229-235.
	[8] B. Cipra, Inset: The sorcerer's apprentice (computer-assisted conjectures), Science 244, (1989).
	[9] S. Colton, On the notion of interestingness in automated mathematical discovery, International Journal of Human Computer Studies 53 (2000), 351-375.
	-

	[10] E. DeLaVina, On conjectures of Gra.ti, a website regularly update with bibliographic information as it relates to the program Graﬃti and its conjecture, available at , (2003).
	-
	http://cms.dt.uh.edu/faculty/delavinae/research/wowref.htm

	[11] E. DeLaVina, S. Fajtlowicz and B. Waller, On some conjectures of Griggs and Gra.ti, to appear in Graphs and Discovery, American Mathematical Society.
	[12] E. DeLaVina, Written on the Wall II, a list of conjectures of Gra.ti and available at /.
	Gra.ti.pc
	http://cms.dt.uh.edu/faculty/delavinae/research/wowII

	[13] E. DeLaVina, , Graph Theory Notes of New York XLII (2002), 26-30.
	Gra.ti.pc

	[14] E. DeLaVina, About jets of independent sets and the Szekeres-Wilf invariant, Bull. Inst. Combin. Appl. 24 (1998), 47-50.
	[15] E. DeLaVina, Ramseyan properties and conjectures of Gra.ti, Ph.D. thesis, University of Houston, (1997).
	[16] E. DeLaVina and B. Waller, Independence, radius, and path covering in trees, Congr. Numer. 156 (2002), 155-169.
	[17] E. DeLaVina and B. Waller, On some conjectures of on the maximum order of induced subgraphs, preprint (2004).
	Gra.ti.pc

	[18] E. DeLaVina, An investigation of the counter-independence and the jet number of a graph, Master Thesis, University of Houston, (1993).
	[19] E. DeLaVina and S. Fajtlowicz, Ramseyan properties of graphs, Electronic Journal of Combinatorics 3 (1996).
	-

	[20] E. DeLaVina, Ramseyan properties of connected triangle-free graphs, Congr. Numer. 148 (2001), 185-192.
	[21] M. J. Dinneen, A computational attack on Gra.ti's matching and chromatic number conjectures, Los Alamos National Laboratory manuscript, (1992).
	-

	[22] Ann Dowker, Computational estimation strategies of professional mathematician, Journal for Research in Mathematics Education (1992), 45-55.
	[23] P. Erd¨os, M. Sachs and V. Sos, Maximum induced trees in graphs, J. Graph Theory 41 (1986), 61-79.
	[24] S. Fajtlowicz and Bill Waller, On two conjectures of Gra.ti, Congr. Numer. 55 (1986), 51-56.
	[25] S. Fajtlowicz, On conjectures of Gra.ti, Discrete Math. 72 (1988), 113-118.
	[26] S. Fajtlowicz, On conjectures of Gra.ti II, Congr. Numer. 60, (1987). 189-197.
	[27] S. Fajtlowicz, On conjectures of Gra.ti III, Congr. Numer. 66 (1988), 23-32.
	[28] S. Fajtlowicz, On conjectures and methods of Gra.ti, Proceedings of the 4th Clemson Mini-conference on Discrete Mathematics, (1989).
	[29] S. Fajtlowicz, On conjectures of Gra.ti IV, Congr. Numer. (1990), 231-240.
	[30] S. Fajtlowicz, On conjectures of Gra.ti V, Proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs 1 (1995), 367-376.
	-

	[31] S. Fajtlowicz, Written on the Wall, a list of Conjectures of Gra.ti, available from Fajtlowicz.
	[32] S. Fajtlowicz, Fullerene Expanders, a list of Conjectures of Minuteman, available from Fajtlowicz.
	-

	[33] S. Fajtlowicz, Pony Express, an extension of Written on the Wall on conjectures about carcinogenic and stable benzenoids, available from Fajtlowicz.
	-

	[34] S. Fajtlowicz, A characterization of radius-critical graphs, J. Graph Theory 12 (1988), 526532.
	-

	[35] S. Fajtlowicz, Toward fully automated fragments of graph theory, Graph Theory Notes of New York XLII (2002), 18-25.
	[36] S. Fajtlowicz, Toward fully automated fragments of graph theory, II, submitted.
	[37] S. Fajtlowicz, On representation and characterization of buckmisterfullerene C60, submitted.
	[38] S. Fajtlowicz, Conjectures about self and acceleration of programs, manuscript, available from Fajtlowicz.
	[39] S. Fajtlowicz and C. Larson, Graph-theoretical independence as a predictor of fullerene stability, Chemistry Physics Letters 377 (2003), 485-490.
	-

	[40] O. Favaron, M. Maheo and J-F. Sacle, On the residue of a graph, J. Graph Theory 15 (1991), 39-64.
	[41] P. W. Fowler, K. M. Rodgers, S. Fajtlowicz, P. Hansen, and G. Caporossi, Facts and conjectures about fullerene graphs, leapfrog, cylinder and Ramanujan fullerenes, EuroConference Alcoma99, Springer, (2000), 134-146.
	-

	[42] J. R. Griggs and D.J. Kleitman, Independence and the Havel-Hakimi residue, Discrete Math. 127 (1994), 209-212.
	[43] S.L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a graph, SIAM J. Appl. Math. 10 (1962), 496-506.
	[44] P. Hansen and H. M.elot, Computers and discovery in algebraic graph theory, Linear Algebra and Applications 356 (2002), 211-230.
	[45] P. Hansen, Computers in graph theory, Graph Theory Notes of New York XLIII (2002), 20-34.
	[46] V. Havel, A remark on the existence of .nite graphs (Czech), Casopis Pest. Mat. 80 (1955), 477-580.
	[47] J. Horgan, Death of proof, Scientiﬁc American, October (1993).
	[48] G. Kolata, Mathematicians look for computerized ideas, New York Times, June (1989).
	[49] P. Langley, The computer-aided discovery of scienti. c knowledge, Discovery Science: First International Conference, DS’98, Fukuoka, Japan, December 1998. Proceedings, Lecture Notes in Computer Science, Springer-Verlag Heidelberg, (1998), 25 -39.
	[50] C. Larson, Intelligent machinery and mathematical discovery, Graph Theory Notes of New York XLII (2002), 8-17.
	[51] C. Larson, An updated survey of research in automated mathematical conjecture-making, submitted.
	[52] L. Lov.asz, Combinatorial Problems and Exercises, Academiai Kiado, (1979).
	[53] B. McKay, makeg, available at .
	http://www.theory.csc.uvic.ca/~cos/gen/grap.html

	[54] R. Pepper, On new didactics of mathematics-learning graph theory via Gra.ti, to appear in Graphs and Discovery, American Mathematical Society.
	[55] S. Skiena, The graphs of Gra.ti: a database of counterexamples to conjectures of Gra.ti, available at .
	ftp.cs.sunysb.edu

	[56] H. Stoyan and M. M¨uller,Zur kreativen, For the creative, knowledge-based discovery of interesting mathematical concepts with methods of arti. cial intelligence (Dutch), Tagungsband “Kreatives Denken und Innovationen in mathematischen Wissenschaften” -Jenaer Schriften zur Mathematik und Informatik, (1999).
	-

	[57] R. E. Valdes-Perez, Why some machines do science well, 1998 International Congress on Discovery and Creativity, (1998).
	E-mail address:
	delavinae@uhd.edu

