ON SOME CONJECTURES OF GRIGGS AND
GRAFFITI

ERMELINDA DELAVINA, SIEMION FAJTLOWICZ, BILL WALLER

ABSTRACT. We discuss a conjecture of J. R. Griggs relating the
maximum number of leaves in a spanning tree of a simple, con-
nected graph to the order and independence number of the graph.
We prove a generalization of this conjecture made by the computer
program Graffiti, and discuss other similar conjectures, including
several generalizations of the theorem that the independence num-
ber of a simple, connected graph is not less than its radius.

1. INTRODUCTION

Graffiti, a computer program that makes conjectures, was written
by S. Fajtlowicz. A later version of this program, called Dalmatian,
was coauthored with E. DeLaVina. An annotated listing of several
hundred of Graffiti’s conjectures, dating from the program’s inception
in the mid-1980’s, can be found in [8]. Graffiti has correctly conjec-
tured a number of new bounds for several well-studied graph invariants;
bibliographical information on resulting papers can be found in [3].

All graphs considered are simple and finite of order n. We let a@ =
a(@) denote the independence number of a graph G, and L = L(G) the
maximum number of leaves over all spanning trees of the graph. Let G
be graph, and suppose v is a vertex of G. Then the local independence
number at v is the independence number of the subgraph induced by
the neighbors of vertex v. Let p = u(G) be the maximum of the
local independence numbers taken over all vertices of G. A subset
of the vertices of G that spans a connected subgraph and dominates
the remaining vertices of GG is called a connected dominating set for
G. The size of a smallest connected dominating set of GG is called the
connected domination number of G. (Standard graph-theoretical terms
not defined in this paper can be found in [16].)
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In 1996, J. R. Griggs communicated the following conjecture to
DeLaVina.

Conjecture 1. (Griggs) Let G be a connected graph. Then
L>n—2a+1.

Griggs further inquired as to whether Graffiti could make such a
conjecture. DeLaVina’s subsequent experiments with Graffiti resulted
in the program conjecturing a number of other lower bounds for the
invariant L. Many of these bounds are now known to be correct [2].
While determining L exactly is NP-hard [12], quite a few papers have
considered the problem of finding lower bounds for L (see [10], [11]
and [14]). Interestingly, Graffiti did not duplicate Griggs’ conjecture.
Instead, it discovered the following statement, which is stronger than
Griggs’ conjecture for graphs other than cliques.

Conjecture 2. (Graffiti) Let G be a connected graph. Then
L>n+p—2a—1.

A subset of vertices is a connected dominating set if and only if its
complement is the set of leaves of a spanning tree. Therefore, inequal-
ities of the form L > n — i, where ¢ is some graph invariant, are of
interest because i provides an upper bound on the connected dom-
ination number of G. These conjectures of Griggs and Graffiti state
inequalities of this form. The connected domination number of a graph
has been considered in several recent papers (see [1]).

DeLaVina and Fajtlowicz proved Griggs’ conjecture shortly after
Graffiti made the stronger conjecture. (Y. Caro communicated an in-
dependent proof to Griggs as well.) We defer all proofs until later in the
paper; however, the proof of Conjecture 2 (likewise the original proof of
Conjecture 1) is closely based on techniques used by Fajtlowicz and B.
Waller in [9] to prove the following Theorem 1. This theorem results
from one of Graffiti’s earliest conjectures. Alternative proofs of this
theorem are given by O. Favaron (see [8]) and Fajtlowicz (see [6]); the
result also follows from a lemma due to F. Chung quoted in [5]. We let
r = r(G) denote the radius of a graph G.

Theorem 1. (Fajtlowicz and Waller) Let G be a connected graph.
Then

a>r.

The proof of Conjecture 2 can be extended to prove the following
Theorem 2 due to Fajtlowicz. Note again that Theorem 2 is a strength-
ening of Theorem 1 for graphs other than cliques. As far as we are
aware, it is the first known improvement of Theorem 1.



Theorem 2. (Fajtlowicz) Let G be a connected graph. Then
a>r+p—2.

For certain types of graphs, the inequality provided by Theorem 1
is sharp. For instance, paths and cycles of even order, or barbells with
odd diameter, have this property. Thus Theorem 2 provides a necessary
condition for this inequality to be sharp, namely, p < 2.

Fajtlowicz was inspired to suggest Theorem 2 because of another
generalization of Theorem 1 made by Graffiti. A collection of vertex
disjoint paths which cover all vertices of a graph G is called a path
covering of G. The size of a smallest path covering will be called the
path covering number of G; we use p = p(G) to denote this number.
In [13], L. Lovasz found a simple, but nice bound for the independence
number: a > p. In light of this bound and Graffiti’s bound «a > r, the
following of Graffiti’s conjectures was of particular interest to us.

Conjecture 3. (Graffiti [7]) Let G be a connected graph. Then
a>r+p—1

The “—1” term is required, for otherwise cliques with more than one
vertex would be obvious counterexamples. We note that the conjecture
is true for values of r < 3; Lovasz proved this within hours of learning
of the conjecture [private communication|. However, DeLaVina and
Waller have found counterexamples to this conjecture for all r > 4 [4].
In fact, they demonstrate a family of trees {7}, | k = 1,2,3,...} where

T’(Tgk) + p(Tgk) — Oé(Tgk) = k.

For the sake of completeness, we will repeat the construction of Ty in
the next section. Upon being informed of counterexamples to Conjec-
ture 3, Graffiti made the following two conjectures.

Conjecture 4. (Graffiti) Let G be a connected graph. Then
r
> | = .
“= bJ Tr
Conjecture 5. (Graffiti) Let G be a connected graph. Then
1
> —_—
aZr+ 5

Figure 1 shows an example of equality for Conjectures 4 and 5. They
remain open in the general case. However, both conjectures are true
if restated for trees, as shown by the following two theorems. The
proof of Theorem 3 is derived from the counterexamples to Conjecture
4 mentioned earlier and is given in [4]; the proof of Theorem 4 is given
in the next section. In section 3, we list some additional conjectures
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F1GURE 1. Example of equality for Conjectures 4 and 5

regarding the independence number that Graffiti generated at the same
time as Conjectures 4 and 5.

Theorem 3. (DeLaVina and Waller) Let T be a tree of order more
than 2 and suppose d is the number of vertices contained on a path in
T of maximum length (i.e. d is one more than the diameter of T'). Put

x = [d/3]. If x is even, then

S 2z n
«Q T .
T \3x+2 p

On the other hand, suppose x is odd. Then

S 2z n
«Q T .
“\3r+1 p

Moreover, both bounds are sharp, for all possible values of x.

Theorem 4. Let T be a tree. Then

>r+ !
a>r+ —.
- 2

Of course, this bound is sharp for paths of even order. The tree in
Figure 1 shows this bound is sharp, even when p > 1. Furthermore,
one can easily extend this tree to demonstrate other cases of equality
where p > 1, for all r > 4.

2. PROOFS OF MAIN RESULTS

Proof of Conjecture 2. In a 1986 paper by Fajtlowicz and Waller
[9], a connected dominating set was called a trunk, since any trunk for
G can be used to create a spanning tree where each of the non-trunk
vertices of GG is a leaf of the spanning tree. Now in trying to establish
inequalities of the form L > n —i, where 7 is some graph invariant, it is
enough to show that G has a connected dominating set with no more
than ¢ vertices. Thus in order to prove Conjecture 2, we need only show
the existence of a connected dominating set of size at most 2a — u+ 1.
Lemma 1 provides such a set. This lemma is essentially Waller’s Lemma
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5.2 given in [15]; however, for the purposes of this paper we begin with
a vertex that realizes maximum local independence.

Lemma 1. Suppose G is a connected graph such that p > 2 (i.e. G
is not a clique). Then there exists a mazimal independent subset M
of the vertices of G, and a connected dominating set T' containing M,
such that T' has no more than 2|M|—u + 1 vertices.

Proof. Let ¢ be a vertex such that the local independence number at
¢ is i, and let S be a maximum independent subset of vertices of the
subgraph spanned by ¢ and its neighbors. Since p > 2, it follows ¢ ¢ S.
We will inductively construct a sequence Ty, 75, ..., Ty of subsets of
vertices of G where each subset spans a connected subgraph and T}
is a connected dominating set. In addition, we will define sequences
My, Ms, ..., My; By, Bq,...,Br_1; and N1, Na, ..., N, of subsets of
vertices of GG such that for j =1,2,...  k:

1) M; is independent and |M;| = p+j —1,

2) |Bj-1| <4,

3) N, is the set of all neighbors of vertices in M;,
4) Bj—l - Nj, and

5) Bj—l N Mj = @ and j} = Bj—l U Mj.

We begin by taking M; = S, By = {c}, and T} = M; U By. Clearly
T; spans a connected subgraph and Conditions 1-5 are satisfied.

Now suppose each of the sets T}, M;, B;_1, and N; have been de-
fined for j > 1 and satisfy the given conditions. If M; is a maximal
independent set, then 7; must be a connected dominating set, so we
put M = M; and T'= T} and stop. Since,

T3] = |Bj—1 UM;| = [Bja|+|M;] < p+2j =1 = 2[M|—p+1,
we are finished.

If M; is not maximal, then because G is connected, there exists a
vertex v ¢ M; U N;, and a vertex u € Nj;, such that v is adjacent to
u. Put Mj+1 = Mj U {U}, Bj = Bj—l U {U}, and 7}4_1 = j} U {U,U}.
Then again, clearly 7T}, spans a connected subgraph and Conditions
1-5 are satisfied. The lemma now follows by induction. O

Proof of Theorem 2. (DeLaVina and Fajtlowicz) We can assume G
is not a clique. Apply the algorithm described in the proof of Lemma 1
to G. Clearly the diameter of the subgraph spanned by T} is 2. Let
G; be a tree spanned by the vertices of T} for j = 1,2,... k. Then for
J < k, one can assume the diameter of G;; is at most two more than
the diameter of GG;. Hence, one can moreover assume the diameter of
G, is at most 2k, and consequently, the radius of G is at most k.
But recall T'= T}, is a dominating set for GG, therefore the radius of G



Vo Vi vz V3 Va Vi Vi Vi Ve Vo Vi Vil

FIGURE 2. T}, a counterexample to Conjecture 3

is at most k + 1. Finally, recall M = M) is an independent set and
M| =p+k—1 Thus,a > |[M|=p+k—-1>p+r—2. O

Counterexamples to Conjecture 3. (DeLaVina and Waller) Consider
a path Ps, with 3k vertices. Enumerate the vertices of Psj, from left to
right as vy, vy, v, ... ,v3r_1. Let T} be the tree on 4k vertices formed
by attaching a single edge to P at each of the vertices v; where j =1
(mod 3). Thus 7} is a star with 3 endpoints; T'5 is formed by taking
two copies of T} and adding a single edge from an endpoint of one of
the stars to an endpoint of the other; and so forth. Figure 2 illustrates
T,. It is easy to convince oneself, by inspection, that

T’(T4) + p(T4) — Oé(T4) = 2.
In general, though, in [4] it is shown that for the tree Ty,
T(Tgk) + p(TQk) — &(Tgk) = k

O

Proof of Theorem 4. Let P be a diametric path in 7. Then we can
choose two disjoint independent sets A and B from P whose size meets
or exceeds the radius of T'. Let F' be the forest formed by deleting
P from T. If F' is empty, then p = 1 and we are done. So suppose
otherwise. Let L be a minimum path covering of F', and let S be a set
formed by choosing one endpoint from each path in L. Thus S must
be an independent set in 7', for if not, then L is not minimum. Note
also p < |S|4+1. Let M be the vertices in S adjacent to vertices in A
(with respect to T'), and likewise let IV be the vertices in S adjacent to
vertices in B. Clearly M an N are disjoint. Assume |M| > |N|. Then
|S—N| > |N|. Note also BU(S — N) is an independent set in 7. But,
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3. OTHER CONJECTURES OF GRAFFITI

Graffiti generated numerous other conjectures regarding the inde-
pendence number at the same time it generated Conjectures 4 and 5.
The conjectures listed here are a few of the more interesting or simply
stated of those.

Conjecture 6. (Graffiti) Let G be a graph. Then

a>r+In(p).

Conjecture 7. (Graffiti) Let G be a graph. Then
a > In(r)+ p.

Conjecture 8. (Graffiti) Let G be a graph. Then
a > In(chromatic number of the complement).

Although the previous conjecture is false, it is of interest because it
suggests the classical problem of finding a minimal graph with (large)
chromatic number x and (small) clique number w. (See, for instance,
[16].) The complement of such a graph would be a counterexample.

Acknowledgments: The authors wish to thank the referee for com-
ments regarding the origin of Conjecture 1; and L. Lovasz for permis-
sion to quote his result regarding Conjecture 3.
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