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A NOTE ON DOMINATING SETS AND AVERAGE DISTANCE 

ERMELINDA DELAVI ̃NA, RYAN PEPPER, AND BILL WALLER 
UNIVERSITY OF HOUSTON – DOWNTOWN, HOUSTON, TX, 77002 

Abstract. We show that the total domination number of a simple connected 
graph is greater than the average distance of the graph minus one-half, and 
that this inequality is best possible. In addition, we show that the domina-

tion number of the graph is greater than two-thirds of the average distance 
minus one-third, and that this inequality is best possible. Although the latter 
inequality is a corollary to a result of P. Dankelmann, we present a short and 
direct proof. 

1. Introduction and Key Definitions 

Let G = (V, E) be a simple connected graph of fnite of order |V | = n. Although 
we may identify a graph G with its set of vertices, in cases where we need to be 
explicit we write V (G) to denote the vertex set of G. A set D of vertices of a graph G 
is called a dominating set provided each vertex of V −D is adjacent to a member of 
D. The domination number of G, denoted = (G), is the cardinality of a smallest 
dominating set in G. Likewise, a set D of vertices is called a total dominating set 
provided each vertex of V is adjacent to a member of D. The total domination 
number of G, denoted t = t(G), is the cardinality of a smallest total dominating 
set in G. The distance between two vertices u and v in G is the length of a shortest 
path in G connecting u and v. The Wiener index or total distance of G, denoted by 
W = W (G), is the sum of all distances between unordered pairs of distinct vertices 

¯ ¯of G [5]. The average distance of G, denoted by D = D(G), is 2W/[n(n− 1)]. Put 
another way, this number gives, on average, the distance between a pair of vertices 
of G. Unless stated otherwise, when we refer to a subgraph of G, we mean an 
induced subgraph. 

The total domination number of a graph was frst introduced in [2]. This in-
variant remains of interest to researchers as evidenced by numerous recent papers. 
Various upper and lower bounds on t have been discovered. The domination num-
ber has, of course, been well studied [8,9]. 

The average distance of a graph has sometimes been used to provide lower bounds 
for domination-related invariants, including the domination number itself [4]. One 
of the frst results along these lines is the following theorem due to F. Chung in 
[1], which originated as a conjecture of the computer program Graÿti [6]. The 
independence number of G, denoted by = (G), is the cardinality of a largest set 
of mutually non-adjacent vertices. 
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2 ERMELINDA DELAVI ̃NA, RYAN PEPPER, AND BILL WALLER 

Theorem 1 (Chung). Let G be a graph. Then 

� D, ¯ 

with equality holding if an only if G is complete. 

Recently, this theorem has been generalized by Hansen et al. as a result about 
the forest number f = f(G) of a graph G [7]. This is the maximum order of an 
induced forest of G. 

Theorem 2 (Hansen et al.). Let G be a graph. Then 

f � 2D. ¯ 

This theorem was also motivated by a conjecture of Graÿti [10]. Its proof is 
based on techniques introduced by Dankelmann in [3]. Dankelmann uses similar 
techniques in [4] to characterize graphs with fxed order and domination number 
that have maximum average distance. One can derive the following theorem as a 
corollary of this characterization (although this is not stated in [4]). 

Theorem 3. Let G be a graph. Then 
2 1¯ > D − .
3 3 

Moreover, this inequality is best possible. 

The proof of Danklelmann’s characterization result is lengthy and technical. We 
give a short direct proof of Theorem 3, as well as the following Theorem 4, which 
is the main result of our paper. We defer the proofs to a later section. 

Theorem 4 (Main Theorem). Let G be a graph. Then 

1¯ 
t > D − 

2
. 

Moreover, this inequality is best possible. 

2. Other Definitions 

Let R(k, t, l) denote the binary star on k + t + l vertices, where the maximal 
interior path has order t and there are k leaves on one side of the binary star and 
l leaves on the other. See Figure 1. 

k 

... 

......
 l 

t 

Figure 1. Binary star R(k, t, l). 

Now let R(n, t) denote the binary star of order n where the maximal interior 
path has order t and the leaves are as balanced as possible on each side of the 
binary star. 

A set D of vertices of a graph G is called a connected dominating set provided 
D is a dominating set that induces a connected subgraph of G. The connected 




 



 














3 DOMINATING SETS AND AVERAGE DISTANCE 

domination number of G, denoted c = c(G), is the cardinality of a smallest 
connected dominating set in G. A  trunk for a graph G is a sub-tree (not necessarily 
induced) that contains the vertices of a dominating set of G. Hence, every spanning 
tree of G is a trunk for G, and every connected dominating set is the vertex set 
of some trunk. Standard graph theoretical terms not defned in this paper can be 
found in [11], for instance. 

3. Lemmas 

The proof of Lemma 5 involves elementary algebra, counting, and limit argu-
ments; we therefore omit it. 

Lemma 5. For integers k � 0 and t � 1, 
t(t + 1)(t − 1)

W (R(k, t, k)) = (t + 3)k2 + (t + 2)(t − 1)k + , and 
6 

t(t + 1)(t + 2)  
W (R(k, t, k + 1)) = (t + 3)k2 + (t + 1)2k + .

6 
Moreover, 

W (R(k, t, k)) < W (R(k, t, k + 1)) < W (R(k + 1, t, k + 1)), and 

lim D ¯(R(k, t, k)) = 
t + 3  

. 
k!1 2 

The following lemma is proven in [6, Theorem 2]. 

Lemma 6. Let G be a graph with a trunk of order t � 1. Then 
¯ ¯ D(G) � D(R(n, t)), 

with equality holding if and only if G = R(n, t). 

The next lemma follows by combining the two previous lemmas. 

Lemma 7. Let G be a graph with a trunk of order t � 1. Then 
t + 3¯ D(G) < .

2 
An immediate consequence of Lemmas 5 and 7 is the following corollary, which 

defnes the relationship between the minimum order of a connected dominating set 
of a graph G, denoted c = c(G), and its average distance. 

Corollary 8. Let G be a graph. Then 

c > 2D ¯ − 3. 

Moreover, this inequality is best possible. 

Proof. Let D be a minimum connected dominating set. Then any spanning tree of 
the subgraph induced by D is a trunk for G. Hence, by Lemma 7, 

c + 3¯ D(G) < .
2 

To show this inequality is best possible, consider R(j, t, j), where t � 1 and j � 0. 
It is easy to see that c(R(j, t, j)) = t. But by Lemma 5, 

t + 3  c + 3¯lim D(R(j, t, j)) = = . 
j!1 2 2 

� 
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One fnal lemma is needed. The next simple lemma provides some relations that 
hold for the number of edges induced by dominating sets and their complements. 
Given a graph G with dominating set D, a vertex v /2 D is over-dominated by D if 
it has two or more neighbors in D. The over-domination number of v with respect 
to D, denoted by OD(v), is one less than the number of neighbors v has in D. 

Lemma 9. Let T be a tree with minimum dominating set D such that the number 
of components of D is k. Denote the number of edges with both endpoints in D by 
e1, the number of edges with both endpoints in H = T − D by e2, and the number 
of edges with one endpoint in D and the other endpoint in H by e3. Moreover, let 
j be the number of non-trivial components of H with at least two neighbors in D 
and let lH be the number of components of H with exactly one neighbor in D (the 
leaves of H). Then 

a) e1 = |D| − k P 
b) e2 = k − 1 − P OD(v)v2H 
c) e3 = n − |D| + OD(v)v2H 
d) 2j + lH � e3 = Pk + j + lH − 1 
e) n − lH + 2 +  OD(v) � 2k + |D|. v2H 

Proof. Part a) holds because D induces a forest with k trees. Part c) is true 
because every vertex in H has a neighbor in D, giving the n − |D|, and because 
the summation contributes the extra edges that have one endpoint D and one in 
H. Part b) follows immediately from parts a) and c), since n− 1 =  e1 + e2 + e3 for 
a tree. 

The left hand side of d) comes from the fact that, when counting the edges 
between D and H, each of the lH leaves in H contributes exactly one edge while 
each of the j non-trivial components of H contributes at least two edges. The right 
hand side of d) follows easily by viewing the components of D together with the 
components of H as the vertices of a new tree with e3 edges and k +j + lH vertices. 

From d) we deduce that there are at most k − 1 non-trivial components of H, 
that is, j � k − 1. Combining this with the right hand side of d) and part c), we 
arrive at inequality e). � 

4. Theorem Proofs 

Our strategy for proving Theorem 4 is as follows. Given a minimum total dom-
inating set D of a graph G, we form a particular spanning tree T of G so that D 
is also a minimum total dominating set of T . Then we apply the lemmas from the 
previous section to obtain the desired result. 

Theorem 4 (Main Theorem) Let G be a graph. Then 

t > D ¯ − 1
2
. 

Moreover, this inequality is best possible. 

Proof. Let D be a minimum total dominating set of G. Suppose that D has k 
components. We form a spanning tree T of G such that D is also a minimum total 
dominating set of T . If  G is a tree, then put T = G and we are done. Otherwise, 
let C be a cycle in G. We delete an edge from C as follows. 




 



 
 






 
 























5 DOMINATING SETS AND AVERAGE DISTANCE 

i) If C has two consecutive vertices x and y such that x /2 D and y /2 D, then 
delete the edge between them. The set D is still total dominating set for 
the resulting graph. 

ii) Suppose the frst case does not apply. If C has two consecutive vertices x 
and y such that x 2 D and y /2 D, then delete the edge between them. 
Since the other neighbor of y on C is necessarily in D (or else the frst case 
applies), the set D is still a total dominating set for the resulting graph. 

iii) If neither of the frst two cases apply, then all of the vertices of C are in D. 
Delete any edge of C and the set D is still a total dominating set for the 
resulting graph. 

Repeat this process until all cycles are removed. Call the resulting spanning tree 
T . Since D is a total dominating set of T , t(T ) � |D| = t(G). Since the total 
domination number of a graph is at most the total domination number of any of 
its spanning trees, t(G) � t(T ). Thus, t(T ) =  |D| and D is a minimum total 
dominating set of T . 

Now, let LH , of cardinality lH , denote the leaves of T that are in H = T − D 
(the leaves of T that are not in D). Observe that the sub-tree T −LH contains the 
total dominating set D of G and is thereby a trunk for G. From Lemma 7, 

2D ¯ − 3 < |T − LH | = n − lH . 

Hence by Lemma 9 part e), and since 2k � t, 
X X 

2D ¯ − 3 < 2k + t − 2 − OD(v) � 2 t − 2 − OD(v) � 2 t − 2. 
v2H v2H 

Rearranging yields the desired inequality. 
To show the inequality is best possible, consider R(j, t, j), where t � 2 (mod 4) 

tand j � 0. It is easy to see that t(R(j, t, j)) = + 1. But by Lemma 5, 2 

t 3 1¯lim D(R(j, t, j)) = + = t + 
2
. 

j!1 2 2 
� 

The proof of the theorem provides a necessary condition for t = dD ¯ − 1 e. In  2 
the proof we found a spanning tree T of a connected graph G such that a minimum 
total dominating set of G was also a total dominating set for T . We let H = T −D 
and found that 

X 
t > D ¯ − 1 +

1 
OD(v).

2 2 
v2H 

Now if t = dD ¯ − 1 e, then2 

X1 1 1 
dD ¯ − e = t � dD ¯ − + OD(v)e,

2 2 2 
v2H 

which immediately suggests that D may over-dominate at most one vertex of H, 
and if there is an over-dominated vertex of H, its over-domination number is 1. 

To see that there exist graphs in which any spanning tree containing a minimum 
total dominating set of the graph (as a total dominating set for the spanning tree) 
over-dominates exacly one vertex (with over-domination number 1) of H and t = 
dD ¯ − 1

2 e, consider R(j, t, j), where t >  1, t � 1 (mod 4) and j � t. On the other 
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hand, that this condition is not suÿcient for equality is seen in P4k+3 (the path 
on 4k + 3 vertices) for k � 1. Any minimum total dominating set D in P4k+3 

over-dominates exactly one vertex v of V − D, and v has over-domination number 
¯1, but t is about one half the number of vertices and D is about one third of the 

number vertices. 
Next we present a short and direct proof of Theorem 3. As mentioned previously, 

this result can be deduced from a result of Dankelmann in [4]. 

Theorem 3 Let G be a graph. Then 

2 1¯ > D −
3
.

3 

Moreover, this inequality is best possible. 

Proof. Let D be a minimum dominating set of G. Suppose that D has k com-
ponents. We will form a spanning tree T of G such that D is also a minimum 
dominating set of T . If  G is a tree, then put T = G and we are done. Otherwise, 
let C be a cycle in G. We delete an edge from C as follows. 

i) If C has two consecutive vertices x and y such that x /2 D and y /2 D, 
then delete the edge between them. The set D still dominates the resulting 
graph. 

ii) Suppose the frst case does not apply. If C has two consecutive vertices x 
and y such that x 2 D and y /2 D, then delete the edge between them. 
Since the other neighbor of y on C is necessarily in D (or else the frst case 
applies), the set D still dominates the resulting graph. 

iii) If neither of the frst two cases apply, then all of the vertices of C are in D. 
Delete any edge of C and the set D still dominates the resulting graph. 

Repeat this process until all cycles are removed. Call the resulting spanning tree 
T . Since D is a dominating set of T , (T ) � |D| = (G). Since the domination 
number of a graph is at most the domination number of any of its spanning trees, 
(G) � (T ). Thus, (T ) =  |D| and D is a minimum dominating set of T . 
Now, let LH , of cardinality lH , denote the leaves of T that are in H = T − D 

(the leaves of T that are not in D). Observe that the sub-tree T −LH contains the 
dominating set D of G and is thereby a trunk for G. From Lemma 7, 

2D ¯ − 3 < |T − LH | = n − lH . 

Hence by Lemma 9 part e), and since 2k � 2 , 
X X 

2D ¯ − 3 < 2k + − 2 − OD(v) � 3 − 2 − OD(v) � 3 − 2. 
v2H v2H 

Rearranging yields the desired inequality. 
To show the inequality is best possible, consider the family of stars Sn. Since 

the average distance in stars can be made arbitrarily close to 2, 2 D ¯(Sn) − 1 can3 3 
be made arbitrarily close to (Sn) =  1.  � 

As was the case for total domination number and average distance, one can 
2 ¯ − 1deduce from the proof a similar necessary condition for equality in = d D e.3 3 
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