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Abstract 

The total domination number of a simple, undirected graph G 
is the minimum cardinality of a subset D of the vertices of G such 
that each vertex of G is adjacent to some vertex in D. In 2007 Graf-
fti.pc, a program that makes graph theoretical conjectures, was used 
to generate conjectures on the total domination number of connected 
graphs. More recently, the program was used to generate conjectures 
on the total domination number of trees. In this paper, we discuss 
and resolve several of these conjectures for trees, which are often im-
provements over known results for all connected graphs. 
keywords: Graÿti.pc, total dominating set, total domination num-
ber, degrees, eccentricities 
Mathematics Subject Classifcation: 05C35 

1 Introduction and Defnitions 

A subset D of the vertices of a simple, undirected graph G = (V, E) is  
a total dominating set if each vertex in V is adjacent to some vertex in 
D. The total domination number of a graph G, denoted t(G), is the 
minimum cardinality of a total dominating set of G. Total domination in 
graphs was introduced in 1980 by Cockayne, Dawes, and Hedetniemi [3]. 
Since then a number of papers on total domination in graphs have been 
published. Comprehensive surveys appeared in 1998 (see [10] and [11]), 
and more recently in [12]. 
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The total domination problem is known to be NP-complete and at-
tributed to Pfa�, Laskar and S. Hedetniemi [14]. Its complexity is one 
motivation for discovering bounds for the total domination number of a 
graph. For trees, on the other hand, there exists a linear algorithm [13], 
thus bounds on the total domination number do not seem to have the same 
immediate motivation. However, observe that since there is a spanning tree 
of a connected graph that has the same total domination number as the 
graph, some bounds on t for trees are useful in proofs for bounds on t for 
connected graphs (as was the case in Theorems 3 and 5 in [4].) 

Graÿti.pc is a program that makes graph theoretical conjectures. In 
2007, DeLaViña used Graÿti.pc to generate conjectures involving the total 
domination number of a connected graph [4], and more recently to gener-
ate conjectures involving the total domination number of trees (the topic of 
this paper.) These conjectures take the form of upper or lower bounds for 
the total domination number. In addition to their potential usefulness in 
proving bounds on total domination for graphs in general described above, 
we found the conjectures for trees aesthetically appealing, as they some-
times provide clever or surprising improvements over known bounds for all 
connected graphs. Moreover, their proofs (or counter-examples) can often 
be challenging or amusing. A numbered, annotated listing of Graÿti.pc’s 
total domination conjectures and their current status can be found in [6]. 
Graÿti.pc employs two main strategies (called Dalmatian and Sophie) for 
generating conjectures. The principle behind the Dalmatian heuristic (used 
for conjectures discussed in this paper) is due to S. Fajtlowicz and its im-
plementation within Graÿti.pc is discussed in [5]. 

Let G be a graph with vertex set V = V (G). The number of vertices of 
G we denote by n(G). The degree sequence of a graph provides many graph 
invariants, including its maximum degree and minimum degree, which we 
denote by �(G) and �(G), respectively. The number of distinct values that 
occur in the degree sequence is called the number of distinct degrees of G 
and is denoted by dd(G). In a graph G, a vertex of degree zero is called 
an isolated vertex. A vertex of degree one in a tree is called a leaf, and a 
vertex that is adjacent to a leaf is called a support vertex. 

For a subset A ˆ V , let N (A) denote the neighborhood of A, that is, 
the set of vertices adjacent to vertices in A. Let G[A] denote the subgraph 
of G induced by A. 

Finally, let = (G) denote the independence number of G, that is the 
maximum cardinality of a subset of pairwise non-adjacent vertices. 

The following proposition is a summary of some easily deduced facts 
that will be used in this paper. 
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Figure 1: Neighborhoods of support vertices 

Proposition 1. Let G be a graph with no isolated vertices. Then 

n(G) 
t(G) � 

�(G) 
(1) 

t(G) � 2 (G) (2) 

t(G) � n(G) − �(G) + 1  (3)  

2 Results 

Graÿti.pc’s conjecture #331 in [6] states that the total domination number 
of a tree is at most twice its independence number minus the number of 
isolated vertices induced by the neighborhood of its support vertices, which 
suggests an improvement for trees on the second upper bound given in 
Proposition 1. Let us observe the following about the neighborhood of 
support vertices of trees (Figure 1 makes it obvious). 

Observation 1. Let T be a tree and S its support vertices. Then the 
number of isolated vertices induced by N (S) is less than equal to the number 
of isolated vertices induced by N (S) − S. 

This observation together with Theorem 2 settles and improves on Con-
jecture #331. 

Theorem 2. Let T be a non-trivial tree and S its support vertices. Then 
t � 2 − |L*|, where L* is the set of vertices in N 0(S) =  N (S) − S with 

degree 0 with respect to T [N 0(S)]. 

Proof. The theorem is obvious if T is a star, so let’s assume otherwise. Let 
N 0(S) =  N (S) − S. So  N 0(S) and S are disjoint. Let L denote the set 
of leaves of T , and L+ denote the vertices of N 0(S) that are not leaves 
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Figure 2: spider(4) has = L� = t = 5  

but have degree 0 with respect to T [N 0(S)]. So clearly L*= L [ L+ . Put 
M = N 0(S) − (L [ L+), and let M� be a maximum independent set of 
T [M ]. Let M 0 = M − M� . Because T [M ] =  T [M� [ M 0] is a forest, we 
have |M 0| � |M*|. Next, consider the set L[ L+ [ M*. Although it is easy 
to see this set is independent in T , it may not be a maximal independent 
set. Hence, let K be a set of vertices such that I*= L [ L+ [ M*[K is a 
maximal independent set of vertices in T . Note that the component sets 
L, L+ , M*, and K of I* are pairwise disjoint. Moreover, by construction, 
every vertex of K must be adjacent to some vertex in M 0 . 

0Put D = S[M 0 [L+ [M*[K. We observe the component sets S, M , 
L+ , M*, and K of D are pairwise disjoint. Let K 0 = V (G)−(K[S[N 0(S)). 
So V (G) =  S [ N 0(S) [ K [ K 0 = S [ L+ [ L [ M� [ M 0 [ K [ K 0 , and 
D consists of all the vertices in T other than those in L [ K 0 . D is a total 
dominating set for T . Every vertex in K 0 must be adjacent to some vertex 
in L+ [ M� [ K, by the maximality of the independent set I� . If there 
is a vertex in S which is adjacent only to vertices in L, then T is a star, 
contrary to our assumption. So every vertex in S must be adjacent to a 
vertex in (N 0(S) − L) � D. M 0 , L+ , and M� are all subsets of N 0(S) − L, 
so every vertex in these sets is adjacent to a vertex in S � D. Finally, every 
vertex in K is adjacent to a vertex in M 0 � D. 

Now, 
t � |D|

= |S [ M 0 [ L+ [ M*[K|
= |S|+|M 0|+|L+|+|M*|+|K|
� |L|+|M*|+|L+|+|M*|+|K|+|K|
= 2|L|+2|L+|+2|M*|+2|K|−|L|−|L+|
= 2(|L|+|L+|+|M*|+|K|)− (|L|+|L+|) 
= 2|L [ L+ [ M*[K|−|L[ L+|
= 2  *−|L*|
� 2 − |L*| 

The bound in Theorem 2 is sharp for spider(k), the tree on 2k+1 vertices 
constructed by identifying an endpoint of each of k paths on 3 vertices (see 
Figure 2). This is because the independence and total domination numbers 

4 









are equal to k + 1, and the number of isolated vertices induced by support 
vertices is also k + 1.  

The eccentricity of a vertex v of a graph, denoted r̂(v) is the maximum 
distance from v to another vertex of the graph. The radius of a graph G is 
the minimum eccentricity among vertices of G, and the diameter of a graph 
is the maximum eccentricity among vertices of G, denoted rad(G) and 
diam(G), respectively. The boundary (or periphery) is the set of vertices 
of maximum eccentricity, and the center is the set of vertices of minimum 
eccentricity. The eccentricity of a set X is the minimum eccentricity of 
vertices in X, that is the distance of a vertex furthest away from all vertices 
of X. In [4] we proved that the total domination number of a connected 
graph G is at most one plus the eccentricity of the center of G, which we 
denote by r̂(G); we restate this fact next as Theorem 3. 

Theorem 3. [4] Let G be connected graph on n � 2 vertices. Then t(G) � 
r̂(G) + 1. 

Graÿti.pc’s #357 proposes that for trees this bound can be improved. 

Theorem 4. Let T be a non-trivial tree. Then t(T ) � r̂(T )+ |N (B)|−1, 
where B = {v | r̂(v) =  diam(T )}. 

Proof. For ease of notation, let Nb(T ) represent the number of neighbors 
of boundary vertices of T , and thus the number of support vertices which 
have neighbors in the boundary set. Proceeding by induction on Nb, notice 
that if Nb = 2, the result follows from Theorem 3, settling our base case. 

Assume the theorem is true for all trees with Nb = k � 2 and let T be 
a tree with Nb = k + 1. Let P be a diametral path of T with end vertices 
x and y, and let v be a leaf boundary vertex whose support vertex is not 
on P (such a vertex exists since Nb � 3). 

Without loss of generality assume d(v, x) � d(v, y). Let u be the closest 
vertex to v on P . Now, since v is also on a diametral path and all diametral 
paths must contain the center (or bi-center) of a tree, we can deduce each 
of the following is true, where a nontrivial branch point is a vertex with at 
least three neighbors of degree two or more. 

(i) d(v, u) =  d(u, y) 

(ii) d(x, y) =  diam = d(x, v) 

(iii) There is a nontrivial branch point on the path from v to u. Let w be 
the closest of these to v. Note that d(v, w) � 2. 

Next, let e be the edge adjacent to w on the path from w to v and let C 
be the component of T − e containing v. Now call T 0 be the subtree T −C. 
Let D be a minimum total dominating set of T containing no leaves, and 
D0 the vertices of D in T 0 . We make the following observations about T 0 . 
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(iv) r̂(T 0) = r̂(T ) 

(v) Nb(T 0) =  Nb(T ) − 1 

Suppose d(v, w) � 3. Since there are at least two vertices in D that 
are not in D0 and we can extend D0 to a total dominating set of T 0 by 
adding at most one vertex, t(T 0) � t(T )−1. On the other hand, suppose 
d(v, w) = 2. Let z be a non-leaf neighbor of w, not on the path from v to 
x. Thus, z must be a support vertex and consequently in D0 . Therefore 
D0 is a total dominating set of T 0 , and so we still have t(T 0) � t(T )− 1. 
Finally, taken together and applying our inductive hypothesis, 

(T ) � (T 0) + 1  � r̂(T 0) + Nb(T 0) − 1 + 1  =  r̂(T ) +  Nb(T ) − 1. 

In [2], M. Chellali and T. Haynes proved that the total domination 
number of a tree is bounded below by half of two more than the number 
of non-leaf vertices. The number of non-leaf vertices in a tree is precisely 
the number of cut vertices of the tree, and thus a corollary to their result 
is that the total domination number of a tree is at least one plus half the 
number of cut vertices. Now Graÿti.pc’s #355 is a corollary to the latter 
and Theorem 6. 

Theorem 5. (M. Chellali and T. Haynes [2]) Let T be a non-trivial tree. 
t(T ) � n(T )−L+2Then 2 . 

Theorem 6. Let T be non-trivial tree such that r̂(T ) = 2. Then t(T ) � 
x(T ), where x(T ) is the number of cut vertices of T . 

Proof. Let D be a minimum total dominating set containing no leaves 
(which must exist since T is not a star.) Each support vertex is in D 
and each center has a support neighbor since r̂(T ) = 2. Thus each center 
is in D to dominate its support neighbors. Since every non-leaf is a center 
or a support vertex, the result follows. 

Corollary 7. Let T be a non-trivial tree such that r̂(T ) � 2. Then t(T ) � 
x(T ) , where x(T ) is the number of cut vertices of T 

r̂(T )−1 

Lemma 8. Let T be a non-trivial tree with the property that the vertices 
of T can be partitioned into two sets A and B such that the vertices in A 
are of degree two and B is an independent set. Then T (T ) � |B|. 

Proof. Let D be a minimum total dominating set for T . Enumerate the 
vertices in B as v1, ..., vk. Now for each vi, if  vi is in D, let di = vi. 
Otherwise, let di be some neighbor of vi in D. Now suppose di = dj for 
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Figure 3: G(2) has t = 8,  c2 = 6, and p2 = 6  

distinct values of i and j. If  vi = di, or  vj = dj, then vi and vj must be 
adjacent, a contradiction. So we can assume di = dj is a vertex in A, i.e. it 
has degree 2. But then one of either vi or vj must be in D, a contradiction 
of our choice of di = dj. Thus |D| �  |{d1, ..., dk}| = |{v1, ..., vk}|. 

P. Feit discovered a 34-vertex counter-example to Graÿti.pc’s Conjec-
ture #240 and consequently Conjecture #346 [6]. Indeed, his counter-
example can be extended to make the left and right sides of these inequal-
ities arbitrarily far apart. Conjecture #240 says, for example, that for a 
tree the total domination number is at least the number of components 
induced by non-degree two neighbors of degree two vertices. In Theorem 
9 we prove a weaker version of Conjecture #346. Theorem 9 is sharp for 
many trees. For instance, let G(k) be the graph constructed by taking a 
path on 10 vertices (enumerated left to right as 1, 2, ...10) and identifying 
an endpoint of each of k paths on 3 vertices with vertex 2 on the 10-path 
and similarly identifying an endpoint of each of k paths on 3 vertices with 
vertex 9 on the 10-path. Observe that for k � 1: t(G(k)) = 2k + 4; the 
number of components of the subgraph induced by the complement of the 
degree two vertices, denoted by c2, is  2k + 2; and the order of largest com-
ponent induced by degree two vertices, denoted by p2, is 6. See Figure 2 
for G(2). 

Theorem 9. Let T be a non-trivial tree and S the set of vertices of degree 
two. Let c2 be the number of components of the subgraph induced by V (T )− 
S, and p2 the order of a largest path in the subgraph induced by S. Then 

t(T ) � c2 + 
p2 − 1.
2 

Proof. We assume that T has at least 2 degree two vertices otherwise the 
relation follows trivially. Let us derive a tree T 0 from T as follows. For 
each component of T [V (T ) − S], contract the vertices of the component 
to a single vertex vi such that an edge in T incident to a vertex of the 
component and to a vertex u in no component of T [V (T )−S] is still incident 
to u but now also to vi. Let us call the set of contracted component vertices 
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B = {v1, v2, ..., vc2}. Observe that components of T [S] are paths and let p2 

be the order of a longest such path P . Next, let P 0 be the path P without 
the endpoints of P and add to B the vertices of a largest independent set 
of T [P 0]. Let A = V (T 0) − B. Observe that the vertices in A are of degree 
two in T 0 , and that B is an independent set in T 0 . By construction and 
Lemma 8, c2 + p2−2 � |B| �  t(T 0).2 

Lemma 10. Let T be a non-trivial tree. Let D be a minimum total domi-
nating set of T . Then for any vertex v 2 V (T ) − D, 

t(T )
deg(v) � .

2 

Proof. Let k be the number of components induced by D. For v 2 V (T )−D, 
let A be the set of components of D that have a vertex adjacent to v and 
B = N (v) \ (V (T ) − D) (i.e. the neighbors not in D). Since every vertex 
in V (T ) − D must be adjacent to a vertex in D, in particular a vertex 
in B must have a neighbor in D. But since T is a tree, no vertex in 
B is adjacent to a vertex of a component in A nor to two vertices of a 

t(T )component in D. Thus |B| � k − |A| and the result follows since k � 
2 

and deg(v) =  |A|+ |B|. 

Theorem 11. Let T be a non-trivial tree. Then 

2 
t(T ) � dd(T ).

3 

Proof. Let D be a minimum total dominating set of T . Since the vertices 
in D clearly contribute at most t(T ) distinct degrees and by Lemma 10 
the vertices in V (T )−D contribute at most (T ) distinct degrees, dd(T ) �2 
3 

t(T ).2 

Figure 4: A graph in T4. 

Next we defne three classes of trees that comprise all trees for which 
the bound in Theorem 11 is sharp. By a binary star we mean the tree 
obtained by joining the centers of two stars. Let B(m1, m2) be the binary 
star with support vertices of degrees m1 and m2. We defne T2 as follows. 

T2 = {B(m1, m2) :  m1 =6 m2} 
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i.e. T2 is the collection of binary stars whose support vertices are of distinct 
degrees. 

Next, let T4 be the class of graphs constructed by taking the union of 
B(m1, m2) and B(m3, m4) with mi � 3 and mi 6= mj for 1 � i, j � 4, and 
either identifying one leaf in B(m1, m2) with one leaf in B(m3, m4) (see 
Figure 4 an example of such a graph), or joining one leaf in B(m1, m2) to  
one in B(m3, m4). Observe that for a graph T in T4, t(T ) =  4,  dd(T ) = 6  
and thus the bound in Theorem 11 is sharp for T . 

Lastly, let T6 be the class of graphs constructed by taking the union of 
B(m1, m2), B(m3, m4) and B(m5, m6) with each mi � 4 and mi 6= mj for 
1 � i, j � 6. Then either identify one leaf in B(m1, m2) and B(m3, m4), 
and join this identifed vertex to a leaf of B(m5, m6), or join one leaf in 
B(m1, m2) to a leaf in each of B(m3, m4) and B(m5, m6). For a graph T in 
T6 of the frst type, t(T ) =  6,  dd(T ) = 9 and thus the bound in Theorem 
11 is sharp for T . 

Lemma 12. Let T be a non-trivial tree and let D be a minimum total 
t (T )dominating set of T . If there is v 2 V (T ) − D such that deg(v) =  ,2 

then dd(T ) � t(T ) + 3. 

Proof. Let v be in V (T ) − D of degree t(T )/2. Let A be the set of com-
ponents of D that are incident to v and let B be the set of vertices of 
V (T ) − D that are adjacent to v. Since each vertex in V (T ) − D must be 
incident with one component of D and no two vertices in V (T ) − D are 
incident to a common component of D, each vertex in B must be incident 
with exactly one component of D that is not in A. Moreover, since each 
vertex of V (T ) − D is adjacent to exactly one vertex of a component in 
D, |A| + |B| = t(T )/2 and no other vertex of V (T ) − D can be incident 
with two components of D. Thus, the vertices of V (T ) − D contribute at 
most three distinct degrees, which together with the t(T ) possible distinct 
degrees of the vertices D yields dd(T ) � t(T ) + 3.  

Theorem 13. Let T be a non-trivial tree. Then t(T ) =  2 dd(T ) if and3 
only if T 2 T2 [ T4 [ T6. 

Proof. For a tree T in T2 [T4 [T6 it is easily seen that t(T ) =  2 dd(T ). For 3 
the converse, suppose that T is a tree for which t(T ) =  2 dd(T ) and let D be

3 
a minimum total dominating set. Since the vertices of D contribute at most 

t(T ) distinct degrees, the vertices of V (T ) − D must contribute at least 
t (T ) distinct degrees, which implies that there must be a vertex of degree 
2 

t(T )at least 2 in V −D. Now together with Lemma 10 we have that there is 
t (T )a vertex v of degree . Next by Lemma 12, 3 

t(T ) =  dd(T ) � t(T )+3,  
2 2 

and it follows that t(T ) must be even and at most 6. We proceed by con-
t(T )sidering three cases with the observation that since v is of degree , D2 
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must induce the union of P2s (paths on two vertices). 

Case 1: Suppose t(T ) =  2 and  dd = 3. Then D induces a P2. Clearly, 
every vertex in V (T ) − D is adjacent to at exactly one endpoint of P2 and 
must be a leaf in T . Thus, T is a binary star. Now, since dd = 3, and 
every vertex in V (T )−D is a leaf, the two vertices in D must be of distinct 
degree, and thus T 2 T2. 

Case 2: Suppose t(T ) = 4 and dd = 6. Then there is a vertex v in 
V (T )−D that is of degree 2. Now, either v has both neighbors in D or one 
in D and one in V (T )−D. Suppose v has both neighbors in D. Then since 
T is a tree, no other vertex of V (T )− D has more than one neighbor in D, 
that is they are leaves. So the vertices in V (T )− D contribute two distinct 
degrees, namely degrees 1 and 2. Since dd = 6, each of the 4 vertices in 
D must be of degree at least 3 and distinct from one another. Thus, T is 
a graph in T4. On the other hand, if v has one neighbor, say w, in  D and 
another, call it u, in  V (T ) − D, then u must also have a neighbor in D. 
Now clearly w and u cannot be incident with a common component in D, 
but this implies that the remaining vertices of V (T ) − D are adjacent to 
exactly one vertex in D. Thus the vertices in V (T ) − D contribute two to 
the number of distinct degrees, namely degrees 1 and 2. Moreover, the 4 
vertices in D must be degree at least 3 and distinct from one another. Thus 
again it follows that T is in T4. 

Case 3: Suppose t(T ) = 6 and dd = 9. Then there is a vertex v in 
V (T ) − D that is of degree 3. Now, either v has one neighbor in D or 
two in D, but not all three in D (otherwise dd 6= 9). Suppose that v 
has one neigbor, call it w, in  D. Call the two neighbors of v that are in 
V (T )−D a  and b. Then a and b must be adjacent to some vertex in D, but 
not incident with the component containing w, nor incident to a common 
component of D. But this implies that the other vertices of V (T ) − D are 
adjacent to only one vertex each in D. Thus the vertices in V (T ) − D 
contribute three to the number of distinct degrees, namely degrees 1, 2 and 
3. Moreover, the 6 vertices in D must be degree at least 4 and distinct from 
one another. Thus T is in T6. Finally, suppose that v has two neighbors in 
D. Then each of these two must be part of distinct components of D and 
so the third neighbor of v (the one in V (T ) − D)) must be adjacent to the 
third component of D. Now, clearly the remaining vertices of V (T ) − D 
are adjacent to exactly one vertex in D. Thus the vertices in V (T ) − D 
contribute three to the number of distinct degrees, namely degrees 1, 2 and 
3. Moreover, the 6 vertices in D must be degree at least 4 and distinct from 
one another. Thus again it follows that T is in T6. 

10 
















 


3 Some Open Conjectures 

Graÿti.pc proposed lower bounds on the total domination number of a 
tree that involve the number of components of the subgraph induced by 
the maximum degree vertices. Before discussing one of those we prove a 
related simple lower bound. 

Proposition 14. Let T be a non-trivial tree, M the set of vertices of 
maximum degree in T and c� be the number of components of the subgraph 
induced by M . Then 

t(T ) � c� + 1. 

Proof. We assume that T has � � 3 and at least 2 components induced by 
the maximum degree vertices otherwise the relation follows trivially. Let 
�(T ) be the set of components induced by the maximum degree vertices of 
T , and let c� = |�(T )|. Consider a component Ci 2 �(T ), and let xi be 
a representative of Ci. Observe that every xi has � neighbors that do not 
induce a maximum degree component of their own, either they are not of 
maximum degree or they are in Ci. Suppose that the number of vertices 
incident to more than one Ci is k. Then there are at least �c� − k vertices 
that will not contribute to c�, that is c� � n − (�c� − k). The latter is 
equivalent to (� + 1)c� � n + k. Now since T is a tree, k � c� − 1, and 
we see that 

n − 1 
c� � .

� 
Now, it is easily seen that the claim follows from the fact that n � t(T ).� 

From Theorem 11 and the above proposition, it is easily seen that 
1 

t(T ) � c� + 1 dd(T ). Graÿti.pc proposed the following improvement 2 3 
over the latter observation. 

Conjecture 1. [Graÿti.pc #379] Let T be a non-trivial tree, M the set of 
vertices of maximum degree in T and c� be the number of components of 
the subgraph induced by M . Then 

dd(T ) 
t(T ) � c� + .

3 

The next two conjectures of Graÿti.pc also suggest improvement for 
trees over known results for all connected graphs. In [4], it is proven that 
for any connected graph G, t(G) � rad(G), and that t(G) � (diam(G)+  
1)/2. 
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Conjecture 2. [Graÿti.pc #349] Let T be a non-trivial tree, S the set of 
vertices of degree 2 in T and c be the number of components of the subgraph 
induced by N (S) [ S. Then 

t(T ) � rad(T ) +  c − 1. 

Conjecture 3. [Graÿti.pc #350] Let T be a non-trivial tree, S the set of 
vertices of degree 2 in T and c be the number of components of the subgraph 
induced by N (S) [ S. Then 

diam(T ) + c 
t(T ) � .

2 

In [1], Blidia, Chellali and Ma�ray present a new upper bound for the 
domination number of a graph G, which we denote by (G), and is de-
fned as the minimum cardinality of a set S such that every vertex not 
in the set has a neighbor in the set. Let v (G) be the maximum size of 
a matching in the subgraph induced by the non-neighbors of v and put 
�0(G) =  max{d(v) +  v(G)|v 2 V (G)}. Specifcally, they proved that for 
any graph G = (V, E), (G) � |V (G)| −�0(G). Recently, DeLaViña intro-
duced the graph invariant �0(G) to Graÿti.pc, which it used to conjecture 
the following. 

Conjecture 4. [Graÿti.pc #370] Let T be a non-trivial tree. Then 

2�0(T ) 
t(T ) � 

�(T ) 
. 

We end this paper with a couple of additional open conjectures and 
one refuted conjecture. For a tree T with p2 the order of a largest path 
in the subgraph induced by the degree two vertices of T , and S(T ) the set 
of support vertices of T , it is easy to see that t(T ) � p2 + |S(T )| − 2.2 
Graÿti.pc proposed the following slight improvement. Although it may 
also be easily resolved, we note that few improvements for the obvious 

t(T ) � |S(T )| are known. 

Conjecture 5. [Graÿti.pc #347] Let T be a non-trivial tree, p2 the order 
of a largest path in the subgraph induced by the degree two vertices, and 
S(T ) the set of support vertices of T . Then 

p2 
t(T ) � + |S(T )| − 1.

2 

Conjecture 6. [Graÿti.pc #367] Let T be a non-trivial tree in which the 
most frequently occuring degree is degree 2. Then 

4 
t(T ) � dd(T ).

3 
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Figure 5: Counter-example to Graÿti.pc’s 368 

Let d = (d1, d2, d3, ..., dn) be a non-decreasing sequence of non-negative 
integers, and d0 = (d2 − 1, d3 − 1, ..., dd1+1 − 1, dd1+2, ..., dn) its derivative. 
A sequence is said to be graphic if it is the degree sequence for some graph. 
A result of Havil [9] and Hakimi [8] states that a sequence d graphic if and 
only if d0 is graphic. Let G be a graph and d(G) its degree sequence in 
non-decreasing order. It is also known that if one repeats the derivative on 
the degree sequence of a graph, then after some steps the resulting sequence 
will be a zero-sequence. Incidentally, the number of zeros of the resulting 
sequence is called the residue of the graph, a term coined by Fajtlowicz; 
moreover, his program Graÿti conjectured that the independence number 
of a graph is at least its residue, which was proven in [7]. Now for a 
graph G, let us call the entire process of repeating the derivative on d(G), 
the Havil-Hakimi process, and let k be the smallest integer such that in 
the Havil-Hakimi process the kth step introduces a zero in the derivative. 
DeLaViña introduced the graph invariant to Graÿti.pc, which it used to 
conjecture the following. 

Conjecture 7. [Graÿti.pc #368] Let T be a tree on n >  2 vertices. Then 

t(T ) � 1 +  k, 

where the kth step of the Havil-Hakimi process introduces a zero. 

The graph in Figure 5 is a counter-example to this conjecture with total 
domination number 8 and k = 8. It is easily seen that this counter-example 
belongs to a large family of graphs that serve as counter-examples, but we 
are interested in knowing if a smaller counter-example exists. 
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